Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 1;377(Pt 1):111–120. doi: 10.1042/BJ20030862

Mutational analysis of the catalytic centre of the Citrobacter freundii AmpD N-acetylmuramyl-L-alanine amidase.

Catherine Généreux 1, Dominique Dehareng 1, Bart Devreese 1, Jozef Van Beeumen 1, Jean-Marie Frère 1, Bernard Joris 1
PMCID: PMC1223845  PMID: 14507260

Abstract

Citrobacter freundii AmpD is an intracellular 1,6-anhydro-N-acetylmuramyl-L-alanine amidase involved in both peptidoglycan recycling and beta-lactamase induction. AmpD exhibits a strict specificity for 1,6-anhydromuropeptides and requires zinc for enzymic activity. The AmpD three-dimensional structure exhibits a fold similar to that of another Zn2+ N-acetylmuramyl-L-alanine amidase, the T7 lysozyme, and these two enzymes define a new family of Zn-amidases which can be related to the eukaryotic PGRP (peptidoglycan-recognition protein) domains. In an attempt to assign the different zinc ligands and to probe the catalytic mechanism of AmpD amidase, molecular modelling based on the NMR structure and site-directed mutagenesis were performed. Mutation of the two residues presumed to act as zinc ligands into alanine (H34A and D164A) yielded inactive proteins which had also lost their ability to bind zinc. By contrast, the active H154N mutant retained the capacity to bind the metal ion. Three other residues which could be involved in the AmpD catalytic mechanism have been mutated (Y63F, E116A, K162H and K162Q). The E116A mutant was inactive, but on the basis of the molecular modelling this residue is not directly involved in the catalytic mechanism, but rather in the binding of the zinc by contributing to the correct orientation of His-34. The K162H and K162Q mutants retained very low activity (0.7 and 0.2% of the wild-type activity respectively), whereas the Y63F mutant showed 16% of the wild-type activity. These three latter mutants exhibited a good affinity for Zn ions and the substituted residues are probably involved in the binding of the substrate. We also describe a new method for generating the N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-tripeptide AmpD substrate from purified peptidoglycan by the combined action of two hydrolytic enzymes.

Full Text

The Full Text of this article is available as a PDF (249.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bricas E., Ghuysen J. M., Dezélée P. The cell wall peptidoglycan of Bacillus megaterium KM. I. Studies on the stereochemistry of alpha, alpha'-diaminopimelic acid. Biochemistry. 1967 Aug;6(8):2598–2607. doi: 10.1021/bi00860a043. [DOI] [PubMed] [Google Scholar]
  2. Cheggour A., Fanuel L., Duez C., Joris B., Bouillenne F., Devreese B., Van Driessche G., Van Beeumen J., Frère J. M., Goffin C. The dppA gene of Bacillus subtilis encodes a new D-aminopeptidase. Mol Microbiol. 2000 Nov;38(3):504–513. doi: 10.1046/j.1365-2958.2000.02117.x. [DOI] [PubMed] [Google Scholar]
  3. Cheng X., Zhang X., Pflugrath J. W., Studier F. W. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4034–4038. doi: 10.1073/pnas.91.9.4034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dideberg O., Charlier P., Dive G., Joris B., Frère J. M., Ghuysen J. M. Structure of a Zn2+-containing D-alanyl-D-alanine-cleaving carboxypeptidase at 2.5 A resolution. Nature. 1982 Sep 30;299(5882):469–470. doi: 10.1038/299469a0. [DOI] [PubMed] [Google Scholar]
  5. Duez C., Frère J. M., Geurts F., Ghuysen J. M., Dierickx L., Delcambe L. The exocellular DD-carboxypeptidase-endopeptidase from Streptomyces albus G. Purification and chemical properties. Biochem J. 1978 Dec 1;175(3):793–800. doi: 10.1042/bj1750793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goodell E. W. Recycling of murein by Escherichia coli. J Bacteriol. 1985 Jul;163(1):305–310. doi: 10.1128/jb.163.1.305-310.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodell E. W., Schwarz U. Release of cell wall peptides into culture medium by exponentially growing Escherichia coli. J Bacteriol. 1985 Apr;162(1):391–397. doi: 10.1128/jb.162.1.391-397.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holden H. M., Matthews B. W. The binding of L-valyl-L-tryptophan to crystalline thermolysin illustrates the mode of interaction of a product of peptide hydrolysis. J Biol Chem. 1988 Mar 5;263(7):3256–3260. doi: 10.2210/pdb3tmn/pdb. [DOI] [PubMed] [Google Scholar]
  9. Hori T., Kumasaka T., Yamamoto M., Nonaka N., Tanaka N., Hashimoto Y., Ueki U., Takio K. Structure of a new 'aspzincin' metalloendopeptidase from Grifola frondosa: implications for the catalytic mechanism and substrate specificity based on several different crystal forms. Acta Crystallogr D Biol Crystallogr. 2001 Mar;57(Pt 3):361–368. doi: 10.1107/s0907444900019740. [DOI] [PubMed] [Google Scholar]
  10. Jacobs C., Huang L. J., Bartowsky E., Normark S., Park J. T. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J. 1994 Oct 3;13(19):4684–4694. doi: 10.1002/j.1460-2075.1994.tb06792.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobs C., Joris B., Jamin M., Klarsov K., Van Beeumen J., Mengin-Lecreulx D., van Heijenoort J., Park J. T., Normark S., Frère J. M. AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol. 1995 Feb;15(3):553–559. doi: 10.1111/j.1365-2958.1995.tb02268.x. [DOI] [PubMed] [Google Scholar]
  12. Jacobs C. Pharmacia Biotech & Science prize. 1997 grand prize winner. Life in the balance: cell walls and antibiotic resistance. Science. 1997 Dec 5;278(5344):1731–1732. doi: 10.1126/science.278.5344.1731b. [DOI] [PubMed] [Google Scholar]
  13. Kang D., Liu G., Lundström A., Gelius E., Steiner H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10078–10082. doi: 10.1073/pnas.95.17.10078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kurisu G., Kai Y., Harada S. Structure of the zinc-binding site in the crystal structure of a zinc endoprotease from Streptomyces caespitosus at 1 A resolution. J Inorg Biochem. 2000 Nov;82(1-4):225–228. doi: 10.1016/s0162-0134(00)00136-7. [DOI] [PubMed] [Google Scholar]
  15. Liepinsh Edvards, Généreux Catherine, Dehareng Dominique, Joris Bernard, Otting Gottfried. NMR structure of Citrobacter freundii AmpD, comparison with bacteriophage T7 lysozyme and homology with PGRP domains. J Mol Biol. 2003 Apr 4;327(4):833–842. doi: 10.1016/s0022-2836(03)00185-2. [DOI] [PubMed] [Google Scholar]
  16. Lindberg F., Lindquist S., Normark S. Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii beta-lactamase. J Bacteriol. 1987 May;169(5):1923–1928. doi: 10.1128/jb.169.5.1923-1928.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu C., Xu Z., Gupta D., Dziarski R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J Biol Chem. 2001 Jul 18;276(37):34686–34694. doi: 10.1074/jbc.M105566200. [DOI] [PubMed] [Google Scholar]
  18. Park J. T. Turnover and recycling of the murein sacculus in oligopeptide permease-negative strains of Escherichia coli: indirect evidence for an alternative permease system and for a monolayered sacculus. J Bacteriol. 1993 Jan;175(1):7–11. doi: 10.1128/jb.175.1.7-11.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  21. Taylor A., Gorazdowska M. Conversion of murein to non-reducing fragments by enzymes from phage lambda and Vi II lysates. Biochim Biophys Acta. 1974 Mar 14;342(1):133–136. doi: 10.1016/0005-2795(74)90114-7. [DOI] [PubMed] [Google Scholar]
  22. Vötsch W., Templin M. F. Characterization of a beta -N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and beta -lactamase induction. J Biol Chem. 2000 Dec 15;275(50):39032–39038. doi: 10.1074/jbc.M004797200. [DOI] [PubMed] [Google Scholar]
  23. Werner T., Liu G., Kang D., Ekengren S., Steiner H., Hultmark D. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13772–13777. doi: 10.1073/pnas.97.25.13772. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES