Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 1;377(Pt 1):95–105. doi: 10.1042/BJ20030740

The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP.

Juha Okkeri 1, Liisa Laakkonen 1, Tuomas Haltia 1
PMCID: PMC1223847  PMID: 14510639

Abstract

In P-type ATPases, the nucleotide-binding (N) domain is located in the middle of the sequence which folds into the phosphorylation (P) domain. The N domain of ZntA, a Zn2+-translocating P-type ATPase from Escherichia coli, is approx. 13% identical with the N domain of sarcoplasmic reticulum Ca2+-ATPase. None of the Ca2+-ATPase residues involved in binding of ATP are found in ZntA. However, the sequence G503SGIEAQV in the N domain of ZntA resembles the motif GxGxxG, which forms part of the ATP-binding site in protein kinases. This motif is also found in Wilson disease protein where several disease mutations cluster in it. In the present work, we have made a set of disease mutation analogues, including the mutants G503S (Gly503-->Ser), G505R and A508F of ZntA. At low [ATP], these mutant ATPases are poorly phosphorylated. The phosphorylation defect of the mutants G503S and G505R can, however, be partially (G503S) or fully (G505R) compensated for by using a higher [ATP], suggesting that these mutations lower the affinity for ATP. In all three mutant ATPases, phosphorylation by P(i) has become less sensitive to the presence of ATP, also consistent with the proposal that the Gly503 motif plays a role in ATP binding. In order to test this hypothesis, we have modelled the N domain of ZntA using the sarcoplasmic reticulum Ca2+-ATPase structure as a template. In the model, the Gly503 motif, as well as the residues Glu470 and His475, are located in the proximity of the ATP-binding site. In conclusion, the mutagenesis data and the molecular model are consistent with the idea that the two loops carrying the residues Glu470, His475, Gly503 and Gly505 play a role in ATP binding and activation.

Full Text

The Full Text of this article is available as a PDF (385.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Abed Mona, Mal Tapas K., Kainosho Masatsune, MacLennan David H., Ikura Mitsuhiko. Characterization of the ATP-binding domain of the sarco(endo)plasmic reticulum Ca(2+)-ATPase: probing nucleotide binding by multidimensional NMR. Biochemistry. 2002 Jan 29;41(4):1156–1164. doi: 10.1021/bi015703n. [DOI] [PubMed] [Google Scholar]
  2. Beard S. J., Hashim R., Membrillo-Hernández J., Hughes M. N., Poole R. K. Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol Microbiol. 1997 Sep;25(5):883–891. doi: 10.1111/j.1365-2958.1997.mmi518.x. [DOI] [PubMed] [Google Scholar]
  3. Bossemeyer D. The glycine-rich sequence of protein kinases: a multifunctional element. Trends Biochem Sci. 1994 May;19(5):201–205. doi: 10.1016/0968-0004(94)90022-1. [DOI] [PubMed] [Google Scholar]
  4. Clausen Johannes D., McIntosh David B., Vilsen Bente, Woolley David G., Andersen Jens Peter. Importance of conserved N-domain residues Thr441, Glu442, Lys515, Arg560, and Leu562 of sarcoplasmic reticulum Ca2+-ATPase for MgATP binding and subsequent catalytic steps. Plasticity of the nucleotide-binding site. J Biol Chem. 2003 Mar 20;278(22):20245–20258. doi: 10.1074/jbc.M301122200. [DOI] [PubMed] [Google Scholar]
  5. Danko S., Yamasaki K., Daiho T., Suzuki H., Toyoshima C. Organization of cytoplasmic domains of sarcoplasmic reticulum Ca(2+)-ATPase in E(1)P and E(1)ATP states: a limited proteolysis study. FEBS Lett. 2001 Sep 7;505(1):129–135. doi: 10.1016/s0014-5793(01)02801-0. [DOI] [PubMed] [Google Scholar]
  6. Fan Bin, Rosen Barry P. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J Biol Chem. 2002 Sep 25;277(49):46987–46992. doi: 10.1074/jbc.M208490200. [DOI] [PubMed] [Google Scholar]
  7. Finney Lydia A., O'Halloran Thomas V. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science. 2003 May 9;300(5621):931–936. doi: 10.1126/science.1085049. [DOI] [PubMed] [Google Scholar]
  8. Gatti D., Mitra B., Rosen B. P. Escherichia coli soft metal ion-translocating ATPases. J Biol Chem. 2000 Nov 3;275(44):34009–34012. doi: 10.1074/jbc.R000012200. [DOI] [PubMed] [Google Scholar]
  9. Grant B. D., Hemmer W., Tsigelny I., Adams J. A., Taylor S. S. Kinetic analyses of mutations in the glycine-rich loop of cAMP-dependent protein kinase. Biochemistry. 1998 May 26;37(21):7708–7715. doi: 10.1021/bi972987w. [DOI] [PubMed] [Google Scholar]
  10. Hou Zhanjun, Mitra Bharati. The metal specificity and selectivity of ZntA from Escherichia coli using the acylphosphate intermediate. J Biol Chem. 2003 May 13;278(31):28455–28461. doi: 10.1074/jbc.M301415200. [DOI] [PubMed] [Google Scholar]
  11. Hua Suming, Inesi Giuseppe, Nomura Hiromi, Toyoshima Chikashi. Fe(2+)-catalyzed oxidation and cleavage of sarcoplasmic reticulum ATPase reveals Mg(2+) and Mg(2+)-ATP sites. Biochemistry. 2002 Sep 24;41(38):11405–11410. doi: 10.1021/bi026181u. [DOI] [PubMed] [Google Scholar]
  12. Jacobsen Mette Dorph, Pedersen Per Amstrup, Jorgensen Peter Leth. Importance of Na,K-ATPase residue alpha 1-Arg544 in the segment Arg544-Asp567 for high-affinity binding of ATP, ADP, or MgATP. Biochemistry. 2002 Feb 5;41(5):1451–1456. doi: 10.1021/bi015891h. [DOI] [PubMed] [Google Scholar]
  13. Kubala Martin, Hofbauerová Katerina, Ettrich Rüdiger, Kopecký Vladimír, Jr, Krumscheid Rita, Plásek Jaromír, Teisinger Jan, Schoner Wilhelm, Amler Evzen. Phe(475) and Glu(446) but not Ser(445) participate in ATP-binding to the alpha-subunit of Na(+)/K(+)-ATPase. Biochem Biophys Res Commun. 2002 Sep 13;297(1):154–159. doi: 10.1016/s0006-291x(02)02089-2. [DOI] [PubMed] [Google Scholar]
  14. Kühlbrandt Werner, Zeelen Johan, Dietrich Jens. Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science. 2002 Aug 8;297(5587):1692–1696. doi: 10.1126/science.1072574. [DOI] [PubMed] [Google Scholar]
  15. Loudianos G., Gitlin J. D. Wilson's disease. Semin Liver Dis. 2000;20(3):353–364. doi: 10.1055/s-2000-9389. [DOI] [PubMed] [Google Scholar]
  16. Lutsenko S., Kaplan J. H. Organization of P-type ATPases: significance of structural diversity. Biochemistry. 1995 Dec 5;34(48):15607–15613. doi: 10.1021/bi00048a001. [DOI] [PubMed] [Google Scholar]
  17. McIntosh D. B., Woolley D. G., Vilsen B., Andersen J. P. Mutagenesis of segment 487Phe-Ser-Arg-Asp-Arg-Lys492 of sarcoplasmic reticulum Ca2+-ATPase produces pumps defective in ATP binding. J Biol Chem. 1996 Oct 18;271(42):25778–25789. doi: 10.1074/jbc.271.42.25778. [DOI] [PubMed] [Google Scholar]
  18. Mitchinson C., Wilderspin A. F., Trinnaman B. J., Green N. M. Identification of a labelled peptide after stoicheiometric reaction of fluorescein isothiocyanate with the Ca2+ -dependent adenosine triphosphatase of sarcoplasmic reticulum. FEBS Lett. 1982 Sep 6;146(1):87–92. doi: 10.1016/0014-5793(82)80710-2. [DOI] [PubMed] [Google Scholar]
  19. Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
  20. Okkeri J., Haltia T. Expression and mutagenesis of ZntA, a zinc-transporting P-type ATPase from Escherichia coli. Biochemistry. 1999 Oct 19;38(42):14109–14116. doi: 10.1021/bi9913956. [DOI] [PubMed] [Google Scholar]
  21. Okkeri Juha, Bencomo Eija, Pietilä Marja, Haltia Tuomas. Introducing Wilson disease mutations into the zinc-transporting P-type ATPase of Escherichia coli. The mutation P634L in the 'hinge' motif (GDGXNDXP) perturbs the formation of the E2P state. Eur J Biochem. 2002 Mar;269(5):1579–1586. doi: 10.1046/j.1432-1033.2002.02810.x. [DOI] [PubMed] [Google Scholar]
  22. Patchornik Guy, Munson Keith, Goldshleger Rivka, Shainskaya Alla, Sachs George, Karlish Steven J. D. The ATP-Mg2+ binding site and cytoplasmic domain interactions of Na+,K+-ATPase investigated with Fe2+-catalyzed oxidative cleavage and molecular modeling. Biochemistry. 2002 Oct 1;41(39):11740–11749. doi: 10.1021/bi026334d. [DOI] [PubMed] [Google Scholar]
  23. Petris Michael J., Voskoboinik Ilia, Cater Michael, Smith Kathryn, Kim Byung-Eun, Llanos Roxana M., Strausak Daniel, Camakaris James, Mercer Julian F. B. Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phosphorylated catalytic intermediate. J Biol Chem. 2002 Sep 12;277(48):46736–46742. doi: 10.1074/jbc.M208864200. [DOI] [PubMed] [Google Scholar]
  24. Rensing C., Mitra B., Rosen B. P. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14326–14331. doi: 10.1073/pnas.94.26.14326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rost B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 1996;266:525–539. doi: 10.1016/s0076-6879(96)66033-9. [DOI] [PubMed] [Google Scholar]
  26. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  27. Solioz M., Vulpe C. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci. 1996 Jul;21(7):237–241. [PubMed] [Google Scholar]
  28. Teramachi Satomi, Imagawa Toshiaki, Kaya Shunji, Taniguchi Kazuya. Replacement of several single amino acid side chains exposed to the inside of the ATP-binding pocket induces different extents of affinity change in the high and low affinity ATP-binding sites of rat Na/K-ATPase. J Biol Chem. 2002 Jul 22;277(40):37394–37400. doi: 10.1074/jbc.M204772200. [DOI] [PubMed] [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000 Jun 8;405(6787):647–655. doi: 10.1038/35015017. [DOI] [PubMed] [Google Scholar]
  31. Toyoshima Chikashi, Nomura Hiromi. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature. 2002 Aug 8;418(6898):605–611. doi: 10.1038/nature00944. [DOI] [PubMed] [Google Scholar]
  32. Tsivkovskii Ruslan, Efremov Roman G., Lutsenko Svetlana. The role of the invariant His-1069 in folding and function of the Wilson's disease protein, the human copper-transporting ATPase ATP7B. J Biol Chem. 2003 Jan 27;278(15):13302–13308. doi: 10.1074/jbc.M300034200. [DOI] [PubMed] [Google Scholar]
  33. Vetter I. R., Wittinghofer A. Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Q Rev Biophys. 1999 Feb;32(1):1–56. doi: 10.1017/s0033583599003480. [DOI] [PubMed] [Google Scholar]
  34. Voskoboinik I., Mar J., Camakaris J. Mutational analysis of the Menkes copper P-type ATPase (ATP7A). Biochem Biophys Res Commun. 2003 Feb 7;301(2):488–494. doi: 10.1016/s0006-291x(03)00010-x. [DOI] [PubMed] [Google Scholar]
  35. Xu Chen, Rice William J., He Wanzhong, Stokes David L. A structural model for the catalytic cycle of Ca(2+)-ATPase. J Mol Biol. 2002 Feb 8;316(1):201–211. doi: 10.1006/jmbi.2001.5330. [DOI] [PubMed] [Google Scholar]
  36. Zheng J., Knighton D. R., ten Eyck L. F., Karlsson R., Xuong N., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry. 1993 Mar 9;32(9):2154–2161. doi: 10.1021/bi00060a005. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES