Abstract
Partition of the intrinsically fluorescent HIV fusion inhibitor enfuvirtide into lipidic membranes is relatively high (Delta G =6.6 kcal x mol(-1)) and modulated by cholesterol. A shallow position in the lipidic matrix makes it readily available for interaction with gp41. No conformational energetic barrier prevents enfuvirtide from being active in both aqueous solution and lipidic membranes. Lipidic membranes may play a key role in the enfuvirtide biochemical mode of action.
Full Text
The Full Text of this article is available as a PDF (149.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chiu S. W., Jakobsson E., Subramaniam S., Scott H. L. Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. Biophys J. 1999 Nov;77(5):2462–2469. doi: 10.1016/S0006-3495(99)77082-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandes M. X., García de la Torre J., Castanho M. A. R. B. Joint determination by Brownian dynamics and fluorescence quenching of the in-depth location profile of biomolecules in membranes. Anal Biochem. 2002 Aug 1;307(1):1–12. doi: 10.1016/s0003-2697(02)00024-6. [DOI] [PubMed] [Google Scholar]
- Jiang Shibo, Zhao Qian, Debnath Asim K. Peptide and non-peptide HIV fusion inhibitors. Curr Pharm Des. 2002;8(8):563–580. doi: 10.2174/1381612024607180. [DOI] [PubMed] [Google Scholar]
- Kliger Y., Gallo S. A., Peisajovich S. G., Munoz-Barroso I., Avkin S., Blumenthal R., Shai Y. Mode of action of an antiviral peptide from HIV-1. Inhibition at a post-lipid mixing stage. J Biol Chem. 2001 Jan 12;276(2):1391–1397. doi: 10.1074/jbc.M004113200. [DOI] [PubMed] [Google Scholar]
- Lalezari Jacob P., Henry Keith, O'Hearn Mary, Montaner Julio S. G., Piliero Peter J., Trottier Benôit, Walmsley Sharon, Cohen Calvin, Kuritzkes Daniel R., Eron Joseph J., Jr Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med. 2003 Mar 13;348(22):2175–2185. doi: 10.1056/NEJMoa035026. [DOI] [PubMed] [Google Scholar]
- Loura L. M., Fedorov A., Prieto M. Resonance energy transfer in a model system of membranes: application to gel and liquid crystalline phases. Biophys J. 1996 Oct;71(4):1823–1836. doi: 10.1016/S0006-3495(96)79383-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu M., Blacklow S. C., Kim P. S. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol. 1995 Dec;2(12):1075–1082. doi: 10.1038/nsb1295-1075. [DOI] [PubMed] [Google Scholar]
- Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
- Santos N. C., Prieto M., Castanho M. A. Interaction of the major epitope region of HIV protein gp41 with membrane model systems. A fluorescence spectroscopy study. Biochemistry. 1998 Jun 16;37(24):8674–8682. doi: 10.1021/bi9803933. [DOI] [PubMed] [Google Scholar]
- Santos Nuno C., Prieto Manuel, Castanho Miguel A. R. B. Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. Biochim Biophys Acta. 2003 Jun 10;1612(2):123–135. doi: 10.1016/s0005-2736(03)00112-3. [DOI] [PubMed] [Google Scholar]