Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 1;377(Pt 1):85–93. doi: 10.1042/BJ20031062

Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase.

Peter Fraisl 1, Sonja Forss-Petter 1, Mihaela Zigman 1, Johannes Berger 1
PMCID: PMC1223850  PMID: 14516277

Abstract

It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely.

Full Text

The Full Text of this article is available as a PDF (266.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barinaga M. Mutant fruit flies respond to Lorenzo's oil. Science. 1999 Jun 18;284(5422):1899–1901. doi: 10.1126/science.284.5422.1899. [DOI] [PubMed] [Google Scholar]
  2. Berger J., Albet S., Bentejac M., Netik A., Holzinger A., Roscher A. A., Bugaut M., Forss-Petter S. The four murine peroxisomal ABC-transporter genes differ in constitutive, inducible and developmental expression. Eur J Biochem. 1999 Oct;265(2):719–727. doi: 10.1046/j.1432-1327.1999.00772.x. [DOI] [PubMed] [Google Scholar]
  3. Berger J., Truppe C., Neumann H., Forss-Petter S. A novel relative of the very-long-chain acyl-CoA synthetase and fatty acid transporter protein genes with a distinct expression pattern. Biochem Biophys Res Commun. 1998 Jun 18;247(2):255–260. doi: 10.1006/bbrc.1998.8770. [DOI] [PubMed] [Google Scholar]
  4. Berger J., Truppe C., Neumann H., Forss-Petter S. cDNA cloning and mRNA distribution of a mouse very long-chain acyl-CoA synthetase. FEBS Lett. 1998 Mar 27;425(2):305–309. doi: 10.1016/s0014-5793(98)00255-5. [DOI] [PubMed] [Google Scholar]
  5. Black P. N., DiRusso C. C., Sherin D., MacColl R., Knudsen J., Weimar J. D. Affinity labeling fatty acyl-CoA synthetase with 9-p-azidophenoxy nonanoic acid and the identification of the fatty acid-binding site. J Biol Chem. 2000 Dec 8;275(49):38547–38553. doi: 10.1074/jbc.M006413200. [DOI] [PubMed] [Google Scholar]
  6. Black P. N., Zhang Q., Weimar J. D., DiRusso C. C. Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem. 1997 Feb 21;272(8):4896–4903. doi: 10.1074/jbc.272.8.4896. [DOI] [PubMed] [Google Scholar]
  7. Boguski M. S., Lowe T. M., Tolstoshev C. M. dbEST--database for "expressed sequence tags". Nat Genet. 1993 Aug;4(4):332–333. doi: 10.1038/ng0893-332. [DOI] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  9. Coleman Rosalind A., Lewin Tal M., Van Horn Cynthia G., Gonzalez-Baró Maria R. Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr. 2002 Aug;132(8):2123–2126. doi: 10.1093/jn/132.8.2123. [DOI] [PubMed] [Google Scholar]
  10. Danielson P. E., Forss-Petter S., Brow M. A., Calavetta L., Douglass J., Milner R. J., Sutcliffe J. G. p1B15: a cDNA clone of the rat mRNA encoding cyclophilin. DNA. 1988 May;7(4):261–267. doi: 10.1089/dna.1988.7.261. [DOI] [PubMed] [Google Scholar]
  11. Forss-Petter S., Werner H., Berger J., Lassmann H., Molzer B., Schwab M. H., Bernheimer H., Zimmermann F., Nave K. A. Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J Neurosci Res. 1997 Dec 1;50(5):829–843. doi: 10.1002/(SICI)1097-4547(19971201)50:5<829::AID-JNR19>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  12. Ghilardi N., Wiestner A., Skoda R. C. Thrombopoietin production is inhibited by a translational mechanism. Blood. 1998 Dec 1;92(11):4023–4030. [PubMed] [Google Scholar]
  13. Hasel K. W., Sutcliffe J. G. Nucleotide sequence of a cDNA coding for mouse cyclophilin. Nucleic Acids Res. 1990 Jul 11;18(13):4019–4019. doi: 10.1093/nar/18.13.4019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heinzer Ann K., Kemp Stephan, Lu Jyh-Feng, Watkins Paul A., Smith Kirby D. Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy. J Biol Chem. 2002 Jun 4;277(32):28765–28773. doi: 10.1074/jbc.M203053200. [DOI] [PubMed] [Google Scholar]
  15. Inouye S., Tsuji F. I. Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett. 1994 Mar 21;341(2-3):277–280. doi: 10.1016/0014-5793(94)80472-9. [DOI] [PubMed] [Google Scholar]
  16. Jump Donald B. The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem. 2001 Dec 17;277(11):8755–8758. doi: 10.1074/jbc.R100062200. [DOI] [PubMed] [Google Scholar]
  17. Laitusis A. L., Brostrom M. A., Brostrom C. O. The dynamic role of GRP78/BiP in the coordination of mRNA translation with protein processing. J Biol Chem. 1999 Jan 1;274(1):486–493. doi: 10.1074/jbc.274.1.486. [DOI] [PubMed] [Google Scholar]
  18. Lazo O., Contreras M., Hashmi M., Stanley W., Irazu C., Singh I. Peroxisomal lignoceroyl-CoA ligase deficiency in childhood adrenoleukodystrophy and adrenomyeloneuropathy. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7647–7651. doi: 10.1073/pnas.85.20.7647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Legakis J. E., Terlecky S. R. PTS2 protein import into mammalian peroxisomes. Traffic. 2001 Apr;2(4):252–260. doi: 10.1034/j.1600-0854.2001.90165.x. [DOI] [PubMed] [Google Scholar]
  20. Lewin T. M., Kim J. H., Granger D. A., Vance J. E., Coleman R. A. Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J Biol Chem. 2001 Apr 23;276(27):24674–24679. doi: 10.1074/jbc.M102036200. [DOI] [PubMed] [Google Scholar]
  21. Lewin Tal M., Van Horn Cynthia G., Krisans Skaidrite K., Coleman Rosalind A. Rat liver acyl-CoA synthetase 4 is a peripheral-membrane protein located in two distinct subcellular organelles, peroxisomes, and mitochondrial-associated membrane. Arch Biochem Biophys. 2002 Aug 15;404(2):263–270. doi: 10.1016/s0003-9861(02)00247-3. [DOI] [PubMed] [Google Scholar]
  22. Mehtani S., Gong Q., Panella J., Subbiah S., Peffley D. M., Frankfater A. In vivo expression of an alternatively spliced human tumor message that encodes a truncated form of cathepsin B. Subcellular distribution of the truncated enzyme in COS cells. J Biol Chem. 1998 May 22;273(21):13236–13244. doi: 10.1074/jbc.273.21.13236. [DOI] [PubMed] [Google Scholar]
  23. Mihalik Stephanie J., Steinberg Steven J., Pei Zhengtong, Park Joseph, Kim Do G., Heinzer Ann K., Dacremont Georges, Wanders Ronald J. A., Cuebas Dean A., Smith Kirby D. Participation of two members of the very long-chain acyl-CoA synthetase family in bile acid synthesis and recycling. J Biol Chem. 2002 Apr 29;277(27):24771–24779. doi: 10.1074/jbc.M203295200. [DOI] [PubMed] [Google Scholar]
  24. Min K. T., Benzer S. Preventing neurodegeneration in the Drosophila mutant bubblegum. Science. 1999 Jun 18;284(5422):1985–1988. doi: 10.1126/science.284.5422.1985. [DOI] [PubMed] [Google Scholar]
  25. Moriya-Sato A., Hida A., Inagawa-Ogashiwa M., Wada M. R., Sugiyama K., Shimizu J., Yabuki T., Seyama Y., Hashimoto N. Novel acyl-CoA synthetase in adrenoleukodystrophy target tissues. Biochem Biophys Res Commun. 2000 Dec 9;279(1):62–68. doi: 10.1006/bbrc.2000.3897. [DOI] [PubMed] [Google Scholar]
  26. Morris D. R., Geballe A. P. Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol. 2000 Dec;20(23):8635–8642. doi: 10.1128/mcb.20.23.8635-8642.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mosser J., Lutz Y., Stoeckel M. E., Sarde C. O., Kretz C., Douar A. M., Lopez J., Aubourg P., Mandel J. L. The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum Mol Genet. 1994 Feb;3(2):265–271. doi: 10.1093/hmg/3.2.265. [DOI] [PubMed] [Google Scholar]
  28. Muresan Z., Arvan P. Thyroglobulin transport along the secretory pathway. Investigation of the role of molecular chaperone, GRP94, in protein export from the endoplasmic reticulum. J Biol Chem. 1997 Oct 17;272(42):26095–26102. doi: 10.1074/jbc.272.42.26095. [DOI] [PubMed] [Google Scholar]
  29. Roerig P., Mayerhofer P., Holzinger A., Gärtner J. Characterization and functional analysis of the nucleotide binding fold in human peroxisomal ATP binding cassette transporters. FEBS Lett. 2001 Mar 9;492(1-2):66–72. doi: 10.1016/s0014-5793(01)02235-9. [DOI] [PubMed] [Google Scholar]
  30. Rusiñol A. E., Cui Z., Chen M. H., Vance J. E. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem. 1994 Nov 4;269(44):27494–27502. [PubMed] [Google Scholar]
  31. Sakuma S., Fujimoto Y., Katoh Y., Kitao A., Fujita T. The regulation of prostaglandin and arachidonoyl-CoA formation from arachidonic acid in rabbit kidney medulla microsomes by palmitoyl-CoA. Life Sci. 2000 Feb 11;66(12):1147–1153. doi: 10.1016/s0024-3205(00)00418-5. [DOI] [PubMed] [Google Scholar]
  32. Shenkman M., Ayalon M., Lederkremer G. Z. Endoplasmic reticulum quality control of asialoglycoprotein receptor H2a involves a determinant for retention and not retrieval. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11363–11368. doi: 10.1073/pnas.94.21.11363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smith K. D., Kemp S., Braiterman L. T., Lu J. F., Wei H. M., Geraghty M., Stetten G., Bergin J. S., Pevsner J., Watkins P. A. X-linked adrenoleukodystrophy: genes, mutations, and phenotypes. Neurochem Res. 1999 Apr;24(4):521–535. doi: 10.1023/a:1022535930009. [DOI] [PubMed] [Google Scholar]
  34. Steinberg S. J., Morgenthaler J., Heinzer A. K., Smith K. D., Watkins P. A. Very long-chain acyl-CoA synthetases. Human "bubblegum" represents a new family of proteins capable of activating very long-chain fatty acids. J Biol Chem. 2000 Nov 10;275(45):35162–35169. doi: 10.1074/jbc.M006403200. [DOI] [PubMed] [Google Scholar]
  35. Steinberg S. J., Wang S. J., Kim D. G., Mihalik S. J., Watkins P. A. Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochem Biophys Res Commun. 1999 Apr 13;257(2):615–621. doi: 10.1006/bbrc.1999.0510. [DOI] [PubMed] [Google Scholar]
  36. Tanaka Arowu R., Tanabe Kouichi, Morita Masashi, Kurisu Mikinori, Kasiwayama Yoshinori, Matsuo Michinori, Kioka Noriyuki, Amachi Teruo, Imanaka Tsuneo, Ueda Kazumitsu. ATP binding/hydrolysis by and phosphorylation of peroxisomal ATP-binding cassette proteins PMP70 (ABCD3) and adrenoleukodystrophy protein (ABCD1). J Biol Chem. 2002 Aug 9;277(42):40142–40147. doi: 10.1074/jbc.M205079200. [DOI] [PubMed] [Google Scholar]
  37. Tang P. Z., Tsai-Morris C. H., Dufau M. L. Cloning and characterization of a hormonally regulated rat long chain acyl-CoA synthetase. Proc Natl Acad Sci U S A. 2001 May 29;98(12):6581–6586. doi: 10.1073/pnas.121046998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Uchiyama A., Aoyama T., Kamijo K., Uchida Y., Kondo N., Orii T., Hashimoto T. Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. J Biol Chem. 1996 Nov 29;271(48):30360–30365. doi: 10.1074/jbc.271.48.30360. [DOI] [PubMed] [Google Scholar]
  40. Watkins P. A., Lu J. F., Steinberg S. J., Gould S. J., Smith K. D., Braiterman L. T. Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long-chain fatty acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid concentrations. J Biol Chem. 1998 Jul 17;273(29):18210–18219. doi: 10.1074/jbc.273.29.18210. [DOI] [PubMed] [Google Scholar]
  41. Xu G., Rabadan-Diehl C., Nikodemova M., Wynn P., Spiess J., Aguilera G. Inhibition of corticotropin releasing hormone type-1 receptor translation by an upstream AUG triplet in the 5' untranslated region. Mol Pharmacol. 2001 Mar;59(3):485–492. doi: 10.1124/mol.59.3.485. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES