Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 1;377(Pt 1):241–248. doi: 10.1042/BJ20030935

Accumulation of manganese superoxide dismutase under metal-depleted conditions: proposed role for zinc ions in cellular redox balance.

Kaoru Otsu 1, Yoshitaka Ikeda 1, Junichi Fujii 1
PMCID: PMC1223854  PMID: 14531733

Abstract

A diet low in copper results in increased levels of MnSOD (manganese superoxide dismutase), a critical antioxidative enzyme conferring protection against oxidative stress, in rat liver mitochondria. The mechanism for this was investigated using cultured HepG2 cells, a human hepatocellular carcinoma-derived line. MnSOD activity increased 5-7-fold during incubation in a medium supplemented with metal-depleted fetal bovine serum, with a corresponding elevation of its mRNA levels. Metal depletion also decreased CuZnSOD and glutathione peroxidase levels to approx. 70-80% of baseline. When zinc ions were added to the medium at micromolar levels, MnSOD accumulation was suppressed; however, copper ions had essentially no effect on MnSOD expression. Since the intracellular redox status was shifted to a more oxidized state by metal depletion, we examined the DNA-binding activity of NF-kappaB (nuclear factor-kappaB), an oxidative stress-sensitive transactivating factor that plays a primary role in MnSOD induction. A gel shift assay indicated that the DNA-binding activity of NF-kappaB was increased in cells maintained in metal-depleted culture, suggesting the involvement of the transactivating function of NF-kappaB in this induction. This was further supported by the observation that curcumin suppressed both the DNA-binding activity of NF-kappaB and the induction of MnSOD mRNA in cells cultivated under metal-depleted conditions. These results suggest that the level of zinc, rather than copper, is a critical regulatory factor in MnSOD expression. It is possible that a deficiency of zinc in the low-copper diet may be primarily involved in MnSOD induction.

Full Text

The Full Text of this article is available as a PDF (238.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  2. Borrello S., De Leo M. E., Landriscina M., Palazzotti B., Galeotti T. Diethyldithiocarbamate treatment up regulates manganese superoxide dismutase gene expression in rat liver. Biochem Biophys Res Commun. 1996 Mar 27;220(3):546–552. doi: 10.1006/bbrc.1996.0441. [DOI] [PubMed] [Google Scholar]
  3. Borrello S., Demple B. NF kappa B-independent transcriptional induction of the human manganous superoxide dismutase gene. Arch Biochem Biophys. 1997 Dec 15;348(2):289–294. doi: 10.1006/abbi.1997.0355. [DOI] [PubMed] [Google Scholar]
  4. De Leo M. E., Landriscina M., Palazzotti B., Borrello S., Galeotti T. Iron modulation of LPS-induced manganese superoxide dismutase gene expression in rat tissues. FEBS Lett. 1997 Feb 17;403(2):131–135. doi: 10.1016/s0014-5793(97)00034-3. [DOI] [PubMed] [Google Scholar]
  5. Frank S., Kämpfer H., Podda M., Kaufmann R., Pfeilschifter J. Identification of copper/zinc superoxide dismutase as a nitric oxide-regulated gene in human (HaCaT) keratinocytes: implications for keratinocyte proliferation. Biochem J. 2000 Mar 15;346(Pt 3):719–728. [PMC free article] [PubMed] [Google Scholar]
  6. Frank S., Zacharowski K., Wray G. M., Thiemermann C., Pfeilschifter J. Identification of copper/zinc superoxide dismutase as a novel nitric oxide-regulated gene in rat glomerular mesangial cells and kidneys of endotoxemic rats. FASEB J. 1999 May;13(8):869–882. doi: 10.1096/fasebj.13.8.869. [DOI] [PubMed] [Google Scholar]
  7. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525. [DOI] [PubMed] [Google Scholar]
  8. Fujii J., Nakata T., Miyoshi E., Ikeda Y., Taniguchi N. Induction of manganese superoxide dismutase mRNA by okadaic acid and protein synthesis inhibitors. Biochem J. 1994 Jul 1;301(Pt 1):31–34. doi: 10.1042/bj3010031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujii J., Taniguchi N. Phorbol ester induces manganese-superoxide dismutase in tumor necrosis factor-resistant cells. J Biol Chem. 1991 Dec 5;266(34):23142–23146. [PubMed] [Google Scholar]
  10. Fujii Tsuneko, Endo Takeshi, Fujii Junichi, Taniguchi Naoyuki. Differential expression of glutathione reductase and cytosolic glutathione peroxidase, GPX1, in developing rat lungs and kidneys. Free Radic Res. 2002 Oct;36(10):1041–1049. doi: 10.1080/1071576021000006725. [DOI] [PubMed] [Google Scholar]
  11. Jones P. L., Ping D., Boss J. M. Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB. Mol Cell Biol. 1997 Dec;17(12):6970–6981. doi: 10.1128/mcb.17.12.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kiningham K. K., Xu Y., Daosukho C., Popova B., St Clair D. K. Nuclear factor kappaB-dependent mechanisms coordinate the synergistic effect of PMA and cytokines on the induction of superoxide dismutase 2. Biochem J. 2001 Jan 1;353(Pt 1):147–156. [PMC free article] [PubMed] [Google Scholar]
  13. Kokoszka J. E., Coskun P., Esposito L. A., Wallace D. C. Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci U S A. 2001 Feb 13;98(5):2278–2283. doi: 10.1073/pnas.051627098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krishnamoorthy R. R., Crawford M. J., Chaturvedi M. M., Jain S. K., Aggarwal B. B., Al-Ubaidi M. R., Agarwal N. Photo-oxidative stress down-modulates the activity of nuclear factor-kappaB via involvement of caspase-1, leading to apoptosis of photoreceptor cells. J Biol Chem. 1999 Feb 5;274(6):3734–3743. doi: 10.1074/jbc.274.6.3734. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lai C. C., Huang W. H., Askari A., Wang Y., Sarvazyan N., Klevay L. M., Chiu T. H. Differential regulation of superoxide dismutase in copper-deficient rat organs. Free Radic Biol Med. 1994 May;16(5):613–620. doi: 10.1016/0891-5849(94)90061-2. [DOI] [PubMed] [Google Scholar]
  17. Lai C. C., Huang W. H., Klevay L. M., Gunning W. T., 3rd, Chiu T. H. Antioxidant enzyme gene transcription in copper-deficient rat liver. Free Radic Biol Med. 1996;21(2):233–240. doi: 10.1016/0891-5849(96)00029-9. [DOI] [PubMed] [Google Scholar]
  18. Li Y., Huang T. T., Carlson E. J., Melov S., Ursell P. C., Olson J. L., Noble L. J., Yoshimura M. P., Berger C., Chan P. H. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995 Dec;11(4):376–381. doi: 10.1038/ng1295-376. [DOI] [PubMed] [Google Scholar]
  19. Mao S., Leone T. C., Kelly D. P., Medeiros D. M. Mitochondrial transcription factor A is increased but expression of ATP synthase beta subunit and medium-chain acyl-CoA dehydrogenase genes are decreased in hearts of copper-deficient rats. J Nutr. 2000 Sep;130(9):2143–2150. doi: 10.1093/jn/130.9.2143. [DOI] [PubMed] [Google Scholar]
  20. Pani G., Bedogni B., Anzevino R., Colavitti R., Palazzotti B., Borrello S., Galeotti T. Deregulated manganese superoxide dismutase expression and resistance to oxidative injury in p53-deficient cells. Cancer Res. 2000 Aug 15;60(16):4654–4660. [PubMed] [Google Scholar]
  21. Porntadavity S., Xu Y., Kiningham K., Rangnekar V. M., Prachayasittikul V., Prachayasitikul V., St Clair D. K. TPA-activated transcription of the human MnSOD gene: role of transcription factors Sp-1 and Egr-1. DNA Cell Biol. 2001 Aug;20(8):473–481. doi: 10.1089/104454901316976109. [DOI] [PubMed] [Google Scholar]
  22. Reaume A. G., Elliott J. L., Hoffman E. K., Kowall N. W., Ferrante R. J., Siwek D. F., Wilcox H. M., Flood D. G., Beal M. F., Brown R. H., Jr Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet. 1996 May;13(1):43–47. doi: 10.1038/ng0596-43. [DOI] [PubMed] [Google Scholar]
  23. Shefner J. M., Reaume A. G., Flood D. G., Scott R. W., Kowall N. W., Ferrante R. J., Siwek D. F., Upton-Rice M., Brown R. H., Jr Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology. 1999 Oct 12;53(6):1239–1246. doi: 10.1212/wnl.53.6.1239. [DOI] [PubMed] [Google Scholar]
  24. Stocco D. M., Hutson J. C. Characteristics of mitochondria isolated by rate zonal centrifugation from normal liver and Novikoff hepatomas. Cancer Res. 1980 May;40(5):1486–1492. [PubMed] [Google Scholar]
  25. Tong K. K., Hannigan B. M., McKerr G., Strain J. J. The effects of copper deficiency on human lymphoid and myeloid cells: an in vitro model. Br J Nutr. 1996 Jan;75(1):97–108. doi: 10.1079/bjn19960113. [DOI] [PubMed] [Google Scholar]
  26. Visner G. A., Dougall W. C., Wilson J. M., Burr I. A., Nick H. S. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response. J Biol Chem. 1990 Feb 15;265(5):2856–2864. [PubMed] [Google Scholar]
  27. Williams M. D., Van Remmen H., Conrad C. C., Huang T. T., Epstein C. J., Richardson A. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem. 1998 Oct 23;273(43):28510–28515. doi: 10.1074/jbc.273.43.28510. [DOI] [PubMed] [Google Scholar]
  28. Wong G. H., Goeddel D. V. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science. 1988 Nov 11;242(4880):941–944. doi: 10.1126/science.3263703. [DOI] [PubMed] [Google Scholar]
  29. Xu Y., Kiningham K. K., Devalaraja M. N., Yeh C. C., Majima H., Kasarskis E. J., St Clair D. K. An intronic NF-kappaB element is essential for induction of the human manganese superoxide dismutase gene by tumor necrosis factor-alpha and interleukin-1beta. DNA Cell Biol. 1999 Sep;18(9):709–722. doi: 10.1089/104454999314999. [DOI] [PubMed] [Google Scholar]
  30. Xu Yong, Porntadavity Sureerut, St Clair Daret K. Transcriptional regulation of the human manganese superoxide dismutase gene: the role of specificity protein 1 (Sp1) and activating protein-2 (AP-2). Biochem J. 2002 Mar 1;362(Pt 2):401–412. doi: 10.1042/0264-6021:3620401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yoshida T., Maulik N., Engelman R. M., Ho Y. S., Das D. K. Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ Res. 2000 Feb 18;86(3):264–269. doi: 10.1161/01.res.86.3.264. [DOI] [PubMed] [Google Scholar]
  32. Zhu C. H., Huang Y., Oberley L. W., Domann F. E. A family of AP-2 proteins down-regulate manganese superoxide dismutase expression. J Biol Chem. 2001 Jan 26;276(17):14407–14413. doi: 10.1074/jbc.M009708200. [DOI] [PubMed] [Google Scholar]
  33. Zhu C., Huang Y., Weydert C. J., Oberley L. W., Domann F. E. Constitutive activation of transcription factor AP-2 is associated with decreased MnSOD expression in transformed human lung fibroblasts. Antioxid Redox Signal. 2001 Jun;3(3):387–395. doi: 10.1089/15230860152409031. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES