Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):289–297. doi: 10.1042/BJ20030708

Analysis of Stat3 (signal transducer and activator of transcription 3) dimerization by fluorescence resonance energy transfer in living cells.

Antje K Kretzschmar 1, Michaela C Dinger 1, Christian Henze 1, Katja Brocke-Heidrich 1, Friedemann Horn 1
PMCID: PMC1223859  PMID: 12974672

Abstract

Signal transducer and activator of transcription 3 (Stat3) dimerization is commonly thought to be triggered by its tyrosine phosphorylation in response to interleukin-6 (IL-6) or other cytokines. Accumulating evidence from in vitro studies, however, suggests that cytoplasmic Stat3 may be associated with high-molecular-mass protein complexes and/or dimerize prior to its activation. To directly study Stat3 dimerization and subcellular localization upon cytokine stimulation, we used live-cell fluorescence spectroscopy and imaging microscopy combined with fluorescence resonance energy transfer (FRET). Stat3 fusion proteins with spectral variants of green fluorescent protein (GFP), cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) were constructed and expressed in human hepatoma cells (HepG2) and human embryonic kidney cells (HEK-293). Like wild-type Stat3, the fusion proteins redistributed from a preferentially cytoplasmic to nuclear localization upon IL-6 stimulation and supported IL-6-dependent target gene expression. FRET studies in cells co-expressing Stat3-CFP and Stat3-YFP demonstrated that Stat3 dimers exist in the absence of tyrosine phosphorylation. IL-6 induced a 2-fold increase of this basal FRET signal, indicating that tyrosine phosphorylation either increases the dimer/monomer ratio of Stat3 or induces a conformational change of the dimer yielding a higher FRET efficiency. Studies using a mutated Stat3 with a non-functional src-homology 2 (SH2) domain showed that the SH2 domain is essential for dimer formation of phosphorylated as well as non-phosphorylated Stat3. Furthermore, our data show that visualization of normalized FRET signals allow insights into the spatiotemporal dynamics of Stat3 signal transduction.

Full Text

The Full Text of this article is available as a PDF (280.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker S., Groner B., Müller C. W. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature. 1998 Jul 9;394(6689):145–151. doi: 10.1038/28101. [DOI] [PubMed] [Google Scholar]
  2. Bellido T., O'Brien C. A., Roberson P. K., Manolagas S. C. Transcriptional activation of the p21(WAF1,CIP1,SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J Biol Chem. 1998 Aug 14;273(33):21137–21144. doi: 10.1074/jbc.273.33.21137. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharya Samita, Schindler Christian. Regulation of Stat3 nuclear export. J Clin Invest. 2003 Feb;111(4):553–559. doi: 10.1172/JCI15372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bromberg J., Chen X. STAT proteins: signal tranducers and activators of transcription. Methods Enzymol. 2001;333:138–151. doi: 10.1016/s0076-6879(01)33052-5. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee-Kishore M., Wright K. L., Ting J. P., Stark G. R. How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J. 2000 Aug 1;19(15):4111–4122. doi: 10.1093/emboj/19.15.4111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Day R. N., Periasamy A., Schaufele F. Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods. 2001 Sep;25(1):4–18. doi: 10.1006/meth.2001.1211. [DOI] [PubMed] [Google Scholar]
  7. Gerhartz C., Heesel B., Sasse J., Hemmann U., Landgraf C., Schneider-Mergener J., Horn F., Heinrich P. C., Graeve L. Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. J Biol Chem. 1996 May 31;271(22):12991–12998. doi: 10.1074/jbc.271.22.12991. [DOI] [PubMed] [Google Scholar]
  8. Gordon G. W., Berry G., Liang X. H., Levine B., Herman B. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J. 1998 May;74(5):2702–2713. doi: 10.1016/S0006-3495(98)77976-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gupta S., Yan H., Wong L. H., Ralph S., Krolewski J., Schindler C. The SH2 domains of Stat1 and Stat2 mediate multiple interactions in the transduction of IFN-alpha signals. EMBO J. 1996 Mar 1;15(5):1075–1084. [PMC free article] [PubMed] [Google Scholar]
  10. Haan S., Hemmann U., Hassiepen U., Schaper F., Schneider-Mergener J., Wollmer A., Heinrich P. C., Grötzinger J. Characterization and binding specificity of the monomeric STAT3-SH2 domain. J Biol Chem. 1999 Jan 15;274(3):1342–1348. doi: 10.1074/jbc.274.3.1342. [DOI] [PubMed] [Google Scholar]
  11. Haan S., Kortylewski M., Behrmann I., Müller-Esterl W., Heinrich P. C., Schaper F. Cytoplasmic STAT proteins associate prior to activation. Biochem J. 2000 Feb 1;345(Pt 3):417–421. [PMC free article] [PubMed] [Google Scholar]
  12. Hemmann U., Gerhartz C., Heesel B., Sasse J., Kurapkat G., Grötzinger J., Wollmer A., Zhong Z., Darnell J. E., Jr, Graeve L. Differential activation of acute phase response factor/Stat3 and Stat1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. II. Src homology SH2 domains define the specificity of stat factor activation. J Biol Chem. 1996 May 31;271(22):12999–13007. doi: 10.1074/jbc.271.22.12999. [DOI] [PubMed] [Google Scholar]
  13. Janjua S., Stephanou A., Latchman D. S. The C-terminal activation domain of the STAT-1 transcription factor is necessary and sufficient for stress-induced apoptosis. Cell Death Differ. 2002 Oct;9(10):1140–1146. doi: 10.1038/sj.cdd.4401082. [DOI] [PubMed] [Google Scholar]
  14. Jiang Xuejun, Sorkin Alexander. Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells. Mol Biol Cell. 2002 May;13(5):1522–1535. doi: 10.1091/mbc.01-11-0552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kordula T., Rydel R. E., Brigham E. F., Horn F., Heinrich P. C., Travis J. Oncostatin M and the interleukin-6 and soluble interleukin-6 receptor complex regulate alpha1-antichymotrypsin expression in human cortical astrocytes. J Biol Chem. 1998 Feb 13;273(7):4112–4118. doi: 10.1074/jbc.273.7.4112. [DOI] [PubMed] [Google Scholar]
  16. Lütticken C., Wegenka U. M., Yuan J., Buschmann J., Schindler C., Ziemiecki A., Harpur A. G., Wilks A. F., Yasukawa K., Taga T. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science. 1994 Jan 7;263(5143):89–92. doi: 10.1126/science.8272872. [DOI] [PubMed] [Google Scholar]
  17. Mayer B. J., Jackson P. K., Van Etten R. A., Baltimore D. Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo. Mol Cell Biol. 1992 Feb;12(2):609–618. doi: 10.1128/mcb.12.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meyer Thomas, Gavenis Karsten, Vinkemeier Uwe. Cell type-specific and tyrosine phosphorylation-independent nuclear presence of STAT1 and STAT3. Exp Cell Res. 2002 Jan 1;272(1):45–55. doi: 10.1006/excr.2001.5405. [DOI] [PubMed] [Google Scholar]
  19. Miyawaki A., Llopis J., Heim R., McCaffery J. M., Adams J. A., Ikura M., Tsien R. Y. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997 Aug 28;388(6645):882–887. doi: 10.1038/42264. [DOI] [PubMed] [Google Scholar]
  20. Ndubuisi M. I., Guo G. G., Fried V. A., Etlinger J. D., Sehgal P. B. Cellular physiology of STAT3: Where's the cytoplasmic monomer? J Biol Chem. 1999 Sep 3;274(36):25499–25509. doi: 10.1074/jbc.274.36.25499. [DOI] [PubMed] [Google Scholar]
  21. Novak U., Ji H., Kanagasundaram V., Simpson R., Paradiso L. STAT3 forms stable homodimers in the presence of divalent cations prior to activation. Biochem Biophys Res Commun. 1998 Jun 29;247(3):558–563. doi: 10.1006/bbrc.1998.8829. [DOI] [PubMed] [Google Scholar]
  22. Podar Klaus, Tai Yu-Tzu, Cole Craig E., Hideshima Teru, Sattler Martin, Hamblin Angela, Mitsiades Nicholas, Schlossman Robert L., Davies Faith E., Morgan Gareth J. Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem. 2002 Dec 12;278(8):5794–5801. doi: 10.1074/jbc.M208636200. [DOI] [PubMed] [Google Scholar]
  23. Sasse J., Hemmann U., Schwartz C., Schniertshauer U., Heesel B., Landgraf C., Schneider-Mergener J., Heinrich P. C., Horn F. Mutational analysis of acute-phase response factor/Stat3 activation and dimerization. Mol Cell Biol. 1997 Aug;17(8):4677–4686. doi: 10.1128/mcb.17.8.4677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sehgal Pravin B., Guo Gary G., Shah Mehul, Kumar Vinita, Patel Kirit. Cytokine signaling: STATS in plasma membrane rafts. J Biol Chem. 2002 Jan 28;277(14):12067–12074. doi: 10.1074/jbc.M200018200. [DOI] [PubMed] [Google Scholar]
  25. Shah Mehul, Patel Kirit, Fried Victor A., Sehgal Pravin B. Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J Biol Chem. 2002 Sep 13;277(47):45662–45669. doi: 10.1074/jbc.M205935200. [DOI] [PubMed] [Google Scholar]
  26. Shaul P. W., Anderson R. G. Role of plasmalemmal caveolae in signal transduction. Am J Physiol. 1998 Nov;275(5 Pt 1):L843–L851. doi: 10.1152/ajplung.1998.275.5.L843. [DOI] [PubMed] [Google Scholar]
  27. Shuai K., Horvath C. M., Huang L. H., Qureshi S. A., Cowburn D., Darnell J. E., Jr Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell. 1994 Mar 11;76(5):821–828. doi: 10.1016/0092-8674(94)90357-3. [DOI] [PubMed] [Google Scholar]
  28. Stahl N., Boulton T. G., Farruggella T., Ip N. Y., Davis S., Witthuhn B. A., Quelle F. W., Silvennoinen O., Barbieri G., Pellegrini S. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science. 1994 Jan 7;263(5143):92–95. doi: 10.1126/science.8272873. [DOI] [PubMed] [Google Scholar]
  29. Stahl N., Farruggella T. J., Boulton T. G., Zhong Z., Darnell J. E., Jr, Yancopoulos G. D. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science. 1995 Mar 3;267(5202):1349–1353. doi: 10.1126/science.7871433. [DOI] [PubMed] [Google Scholar]
  30. Stephanou Anastasis, Scarabelli Tiziano M., Townsend Paul A., Bell Robert, Yellon Derek, Knight Richard A., Latchman David S. The carboxyl-terminal activation domain of the STAT-1 transcription factor enhances ischemia/reperfusion-induced apoptosis in cardiac myocytes. FASEB J. 2002 Sep 5;16(13):1841–1843. doi: 10.1096/fj.02-0150fje. [DOI] [PubMed] [Google Scholar]
  31. Tangye S. G., Lazetic S., Woollatt E., Sutherland G. R., Lanier L. L., Phillips J. H. Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J Immunol. 1999 Jun 15;162(12):6981–6985. [PubMed] [Google Scholar]
  32. Truong K., Ikura M. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol. 2001 Oct;11(5):573–578. doi: 10.1016/s0959-440x(00)00249-9. [DOI] [PubMed] [Google Scholar]
  33. Wegenka U. M., Buschmann J., Lütticken C., Heinrich P. C., Horn F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol. 1993 Jan;13(1):276–288. doi: 10.1128/mcb.13.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yuan J., Wegenka U. M., Lütticken C., Buschmann J., Decker T., Schindler C., Heinrich P. C., Horn F. The signalling pathways of interleukin-6 and gamma interferon converge by the activation of different transcription factors which bind to common responsive DNA elements. Mol Cell Biol. 1994 Mar;14(3):1657–1668. doi: 10.1128/mcb.14.3.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhang X., Darnell J. E., Jr Functional importance of Stat3 tetramerization in activation of the alpha 2-macroglobulin gene. J Biol Chem. 2001 Jul 3;276(36):33576–33581. doi: 10.1074/jbc.M104978200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES