Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):439–448. doi: 10.1042/BJ20030614

Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions.

Lyn-Marie Birkholtz 1, Carsten Wrenger 1, Fourie Joubert 1, Gordon A Wells 1, Rolf D Walter 1, Abraham I Louw 1
PMCID: PMC1223860  PMID: 12974675

Abstract

Polyamine biosynthesis of the malaria parasite, Plasmodium falciparum, is regulated by a single, hinge-linked bifunctional PfAdoMetDC/ODC [ P. falciparum AdoMetDC (S-adenosylmethionine decarboxylase)/ODC (ornithine decarboxylase)] with a molecular mass of 330 kDa. The bifunctional nature of AdoMetDC/ODC is unique to Plasmodia and is shared by at least three species. The PfAdoMetDC/ODC contains four parasite-specific regions ranging in size from 39 to 274 residues. The significance of the parasite-specific inserts for activity and protein-protein interactions of the bifunctional protein was investigated by a single- and multiple-deletion strategy. Deletion of these inserts in the bifunctional protein diminished the corresponding enzyme activity and in some instances also decreased the activity of the neighbouring, non-mutated domain. Intermolecular interactions between AdoMetDC and ODC appear to be vital for optimal ODC activity. Similar results have been reported for the bifunctional P. falciparum dihydrofolate reductase-thymidylate synthase [Yuvaniyama, Chitnumsub, Kamchonwongpaisan, Vanichtanankul, Sirawaraporn, Taylor, Walkinshaw and Yuthavong (2003) Nat. Struct. Biol. 10, 357-365]. Co-incubation of the monofunctional, heterotetrameric approximately 150 kDa AdoMetDC domain with the monofunctional, homodimeric ODC domain (approximately 180 kDa) produced an active hybrid complex of 330 kDa. The hinge region is required for bifunctional complex formation and only indirectly for enzyme activities. Deletion of the smallest, most structured and conserved insert in the ODC domain had the biggest impact on the activities of both decarboxylases, homodimeric ODC arrangement and hybrid complex formation. The remaining large inserts are predicted to be non-globular regions located on the surface of these proteins. The large insert in AdoMetDC in contrast is not implicated in hybrid complex formation even though distinct interactions between this insert and the two domains are inferred from the effect of its removal on both catalytic activities. Interference with essential protein-protein interactions mediated by parasite-specific regions therefore appears to be a viable strategy to aid the design of selective inhibitors of polyamine metabolism of P. falciparum.

Full Text

The Full Text of this article is available as a PDF (517.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkholtz L., Joubert F., Neitz A. W. H., Louw A. I. Comparative properties of a three-dimensional model of Plasmodium falciparum ornithine decarboxylase. Proteins. 2003 Feb 15;50(3):464–473. doi: 10.1002/prot.10274. [DOI] [PubMed] [Google Scholar]
  2. Bitonti A. J., Dumont J. A., Bush T. L., Edwards M. L., Stemerick D. M., McCann P. P., Sjoerdsma A. Bis(benzyl)polyamine analogs inhibit the growth of chloroquine-resistant human malaria parasites (Plasmodium falciparum) in vitro and in combination with alpha-difluoromethylornithine cure murine malaria. Proc Natl Acad Sci U S A. 1989 Jan;86(2):651–655. doi: 10.1073/pnas.86.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonnefoy S., Attal G., Langsley G., Tekaia F., Mercereau-Puijalon O. Molecular characterization of the heat shock protein 90 gene of the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol. 1994 Sep;67(1):157–170. doi: 10.1016/0166-6851(94)90105-8. [DOI] [PubMed] [Google Scholar]
  4. Bzik D. J., Li W. B., Horii T., Inselburg J. Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8360–8364. doi: 10.1073/pnas.84.23.8360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carucci D. J., Witney A. A., Muhia D. K., Warhurst D. C., Schaap P., Meima M., Li J. L., Taylor M. C., Kelly J. M., Baker D. A. Guanylyl cyclase activity associated with putative bifunctional integral membrane proteins in Plasmodium falciparum. J Biol Chem. 2000 Jul 21;275(29):22147–22156. doi: 10.1074/jbc.M001021200. [DOI] [PubMed] [Google Scholar]
  6. Clarke J. L., Scopes D. A., Sodeinde O., Mason P. J. Glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase. A novel bifunctional enzyme in malaria parasites. Eur J Biochem. 2001 Apr;268(7):2013–2019. doi: 10.1046/j.1432-1327.2001.02078.x. [DOI] [PubMed] [Google Scholar]
  7. Ekstrom J. L., Mathews I. I., Stanley B. A., Pegg A. E., Ealick S. E. The crystal structure of human S-adenosylmethionine decarboxylase at 2.25 A resolution reveals a novel fold. Structure. 1999 May;7(5):583–595. doi: 10.1016/s0969-2126(99)80074-4. [DOI] [PubMed] [Google Scholar]
  8. Geourjon C., Deléage G., Roux B. ANTHEPROT: an interactive graphics software for analyzing protein structures from sequences. J Mol Graph. 1991 Sep;9(3):188-90, 167. doi: 10.1016/0263-7855(91)80008-n. [DOI] [PubMed] [Google Scholar]
  9. Giesecke H., Barale J. C., Langsley G., Cornelissen A. W. The C-terminal domain of RNA polymerase II of the malaria parasite Plasmodium berghei. Biochem Biophys Res Commun. 1991 Nov 14;180(3):1350–1355. doi: 10.1016/s0006-291x(05)81344-0. [DOI] [PubMed] [Google Scholar]
  10. Gilberger T. W., Schirmer R. H., Walter R. D., Müller S. Deletion of the parasite-specific insertions and mutation of the catalytic triad in glutathione reductase from chloroquine-sensitive Plasmodium falciparum 3D7. Mol Biochem Parasitol. 2000 Apr 15;107(2):169–179. doi: 10.1016/s0166-6851(00)00188-2. [DOI] [PubMed] [Google Scholar]
  11. Greenwood Brian, Mutabingwa Theonest. Malaria in 2002. Nature. 2002 Feb 7;415(6872):670–672. doi: 10.1038/415670a. [DOI] [PubMed] [Google Scholar]
  12. Hafner E. W., Tabor C. W., Tabor H. Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. J Biol Chem. 1979 Dec 25;254(24):12419–12426. [PubMed] [Google Scholar]
  13. Ivanetich K. M., Santi D. V. Bifunctional thymidylate synthase-dihydrofolate reductase in protozoa. FASEB J. 1990 Apr 1;4(6):1591–1597. doi: 10.1096/fasebj.4.6.2180768. [DOI] [PubMed] [Google Scholar]
  14. Kappes B., Doerig C. D., Graeser R. An overview of Plasmodium protein kinases. Parasitol Today. 1999 Nov;15(11):449–454. doi: 10.1016/s0169-4758(99)01527-6. [DOI] [PubMed] [Google Scholar]
  15. Kemp D. J., Coppel R. L., Anders R. F. Repetitive proteins and genes of malaria. Annu Rev Microbiol. 1987;41:181–208. doi: 10.1146/annurev.mi.41.100187.001145. [DOI] [PubMed] [Google Scholar]
  16. Kern A. D., Oliveira M. A., Coffino P., Hackert M. L. Structure of mammalian ornithine decarboxylase at 1.6 A resolution: stereochemical implications of PLP-dependent amino acid decarboxylases. Structure. 1999 May;7(5):567–581. doi: 10.1016/s0969-2126(99)80073-2. [DOI] [PubMed] [Google Scholar]
  17. Krause T., Lüersen K., Wrenger C., Gilberger T. W., Müller S., Walter R. D. The ornithine decarboxylase domain of the bifunctional ornithine decarboxylase/S-adenosylmethionine decarboxylase of Plasmodium falciparum: recombinant expression and catalytic properties of two different constructs. Biochem J. 2000 Dec 1;352(Pt 2):287–292. [PMC free article] [PubMed] [Google Scholar]
  18. Lüersen K., Walter R. D., Müller S. The putative gamma-glutamylcysteine synthetase from Plasmodium falciparum contains large insertions and a variable tandem repeat. Mol Biochem Parasitol. 1999 Jan 5;98(1):131–142. doi: 10.1016/s0166-6851(98)00161-3. [DOI] [PubMed] [Google Scholar]
  19. McCann P. P., Pegg A. E. Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Ther. 1992;54(2):195–215. doi: 10.1016/0163-7258(92)90032-u. [DOI] [PubMed] [Google Scholar]
  20. Michelitsch M. D., Weissman J. S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11910–11915. doi: 10.1073/pnas.97.22.11910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miles E. W., Rhee S., Davies D. R. The molecular basis of substrate channeling. J Biol Chem. 1999 Apr 30;274(18):12193–12196. doi: 10.1074/jbc.274.18.12193. [DOI] [PubMed] [Google Scholar]
  22. Myers D. P., Jackson L. K., Ipe V. G., Murphy G. E., Phillips M. A. Long-range interactions in the dimer interface of ornithine decarboxylase are important for enzyme function. Biochemistry. 2001 Nov 6;40(44):13230–13236. doi: 10.1021/bi0155908. [DOI] [PubMed] [Google Scholar]
  23. Müller S., Coombs G. H., Walter R. D. Targeting polyamines of parasitic protozoa in chemotherapy. Trends Parasitol. 2001 May;17(5):242–249. doi: 10.1016/s1471-4922(01)01908-0. [DOI] [PubMed] [Google Scholar]
  24. Müller S., Da'dara A., Lüersen K., Wrenger C., Das Gupta R., Madhubala R., Walter R. D. In the human malaria parasite Plasmodium falciparum, polyamines are synthesized by a bifunctional ornithine decarboxylase, S-adenosylmethionine decarboxylase. J Biol Chem. 2000 Mar 17;275(11):8097–8102. doi: 10.1074/jbc.275.11.8097. [DOI] [PubMed] [Google Scholar]
  25. Perutz M. F., Johnson T., Suzuki M., Finch J. T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5355–5358. doi: 10.1073/pnas.91.12.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peterson C. B., Schachman H. K. Long range effects of amino acid substitutions in the catalytic chain of aspartate transcarbamoylase. Localized replacements in the carboxyl-terminal alpha-helix cause marked alterations in allosteric properties and intersubunit interactions. J Biol Chem. 1992 Feb 5;267(4):2443–2450. [PubMed] [Google Scholar]
  27. Pizzi E., Frontali C. Low-complexity regions in Plasmodium falciparum proteins. Genome Res. 2001 Feb;11(2):218–229. doi: 10.1101/gr.152201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Prasanna V., Bhattacharjya S., Balaram P. Synthetic interface peptides as inactivators of multimeric enzymes: inhibitory and conformational properties of three fragments from Lactobacillus casei thymidylate synthase. Biochemistry. 1998 May 12;37(19):6883–6893. doi: 10.1021/bi9720989. [DOI] [PubMed] [Google Scholar]
  29. Reeder J. C., Brown G. V. Antigenic variation and immune evasion in Plasmodium falciparum malaria. Immunol Cell Biol. 1996 Dec;74(6):546–554. doi: 10.1038/icb.1996.88. [DOI] [PubMed] [Google Scholar]
  30. Rozmajzl P. J., Kimura M., Woodrow C. J., Krishna S., Meade J. C. Characterization of P-type ATPase 3 in Plasmodium falciparum. Mol Biochem Parasitol. 2001 Sep 3;116(2):117–126. doi: 10.1016/s0166-6851(01)00319-x. [DOI] [PubMed] [Google Scholar]
  31. Schofield L. On the function of repetitive domains in protein antigens of Plasmodium and other eukaryotic parasites. Parasitol Today. 1991 May;7(5):99–105. doi: 10.1016/0169-4758(91)90166-l. [DOI] [PubMed] [Google Scholar]
  32. Schramm H. J., Boetzel J., Büttner J., Fritsche E., Göhring W., Jaeger E., König S., Thumfart O., Wenger T., Nagel N. E. The inhibition of human immunodeficiency virus proteases by 'interface peptides'. Antiviral Res. 1996 May;30(2-3):155–170. doi: 10.1016/0166-3542(96)00940-0. [DOI] [PubMed] [Google Scholar]
  33. Shallom S., Zhang K., Jiang L., Rathod P. K. Essential protein-protein interactions between Plasmodium falciparum thymidylate synthase and dihydrofolate reductase domains. J Biol Chem. 1999 Dec 31;274(53):37781–37786. doi: 10.1074/jbc.274.53.37781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Singh S. K., Maithal K., Balaram H., Balaram P. Synthetic peptides as inactivators of multimeric enzymes: inhibition of Plasmodium falciparum triosephosphate isomerase by interface peptides. FEBS Lett. 2001 Jul 13;501(1):19–23. doi: 10.1016/s0014-5793(01)02606-0. [DOI] [PubMed] [Google Scholar]
  35. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Triglia T., Cowman A. F. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7149–7153. doi: 10.1073/pnas.91.15.7149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wattanarangsan Jantanee, Chusacultanachai Sudsanguan, Yuvaniyama Jirundon, Kamchonwongpaisan Sumalee, Yuthavong Yongyuth. Effect of N-terminal truncation of Plasmodium falciparum dihydrofolate reductase on dihydrofolate reductase and thymidylate synthase activity. Mol Biochem Parasitol. 2003 Jan;126(1):97–102. doi: 10.1016/s0166-6851(02)00240-2. [DOI] [PubMed] [Google Scholar]
  39. Wickner R. B., Taylor K. L., Edskes H. K., Maddelein M. L. Prions: Portable prion domains. Curr Biol. 2000 May 4;10(9):R335–R337. doi: 10.1016/s0960-9822(00)00460-7. [DOI] [PubMed] [Google Scholar]
  40. Winstanley Peter A., Ward Steven A., Snow Robert W. Clinical status and implications of antimalarial drug resistance. Microbes Infect. 2002 Feb;4(2):157–164. doi: 10.1016/s1286-4579(01)01523-4. [DOI] [PubMed] [Google Scholar]
  41. Wootton J. C., Federhen S. Analysis of compositionally biased regions in sequence databases. Methods Enzymol. 1996;266:554–571. doi: 10.1016/s0076-6879(96)66035-2. [DOI] [PubMed] [Google Scholar]
  42. Wrenger C., Luersen K., Krause T., Muller S., Walter R. D. The Plasmodium falciparum bifunctional ornithine decarboxylase, S-adenosyl-L-methionine decarboxylase, enables a well balanced polyamine synthesis without domain-domain interaction. J Biol Chem. 2001 Jun 4;276(32):29651–29656. doi: 10.1074/jbc.M100578200. [DOI] [PubMed] [Google Scholar]
  43. Yuvaniyama Jirundon, Chitnumsub Penchit, Kamchonwongpaisan Sumalee, Vanichtanankul Jarunee, Sirawaraporn Worachart, Taylor Paul, Walkinshaw Malcolm D., Yuthavong Yongyuth. Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Biol. 2003 May;10(5):357–365. doi: 10.1038/nsb921. [DOI] [PubMed] [Google Scholar]
  44. Zutshi R., Brickner M., Chmielewski J. Inhibiting the assembly of protein-protein interfaces. Curr Opin Chem Biol. 1998 Feb;2(1):62–66. doi: 10.1016/s1367-5931(98)80036-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES