Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):317–326. doi: 10.1042/BJ20030518

Characterization of human brain nicotinamide 5'-mononucleotide adenylyltransferase-2 and expression in human pancreas.

Joel A Yalowitz 1, Suhong Xiao 1, Mangatt P Biju 1, Aśok C Antony 1, Oscar W Cummings 1, Mark A Deeg 1, Hiremagalur N Jayaram 1
PMCID: PMC1223862  PMID: 14516279

Abstract

NMNAT (nicotinamide 5'-mononucleotide adenylyltransferase; EC 2.7.7.1) catalyses the transfer of the adenylyl group from ATP to NMN to form NAD. We have cloned a novel human NMNAT cDNA, designated hNMNAT-2, from human brain. The cDNA contains a 924 bp open reading frame that encodes a 307 amino acid peptide that was expressed as a histidine-patch-containing thioredoxin fusion protein. Expressed hNMNAT-2 shared only 35% amino acid sequence homology with the human NMNAT enzyme (hNMNAT-1), but possessed enzymic activity comparable with hNMNAT-1. Using human genomic databases, hNMNAT-2 was localized to chromosome 1q25 within a 171 kb gene, whereas hNMNAT-1 is on chromosome 1p32-35. Northern blot analysis revealed highly restricted expression of hNMNAT-2 to brain, heart and muscle tissues, which contrasts with the wide tissue expression of hNMNAT-1; different regions of the brain exhibited differential expression of hNMNAT-2. Substitution mutations of either of two invariant residues, His-24 or Trp-92, abolished enzyme activity. Anti-peptide antibody to a unique epitope within hNMNAT-2 was produced, and immunohistochemical analysis of sections of normal adult human pancreas revealed that hNMNAT-2 protein was markedly expressed in the islets of Langerhans. However, the pancreatic exocrine cells exhibited weak expression of hNMNAT-2 protein. Sections of pancreas from insulinoma patients showed strong expression of hNMNAT-2 protein in the insulin-producing tumour cells, whereas acinar cells exhibited relatively low expression of hNMNAT-2 protein. These data suggest that the unique tissue-expression patterns of hNMNAT-2 reflect distinct functions for the isoforms in the regulation of NAD metabolism.

Full Text

The Full Text of this article is available as a PDF (421.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Kerlavage A. R., Fleischmann R. D., Fuldner R. A., Bult C. J., Lee N. H., Kirkness E. F., Weinstock K. G., Gocayne J. D., White O. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature. 1995 Sep 28;377(6547 Suppl):3–174. [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balducci E., Emanuelli M., Raffaelli N., Ruggieri S., Amici A., Magni G., Orsomando G., Polzonetti V., Natalini P. Assay methods for nicotinamide mononucleotide adenylyltransferase of wide applicability. Anal Biochem. 1995 Jun 10;228(1):64–68. doi: 10.1006/abio.1995.1315. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  6. Coleman M. P., Conforti L., Buckmaster E. A., Tarlton A., Ewing R. M., Brown M. C., Lyon M. F., Perry V. H. An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9985–9990. doi: 10.1073/pnas.95.17.9985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conforti L., Tarlton A., Mack T. G., Mi W., Buckmaster E. A., Wagner D., Perry V. H., Coleman M. P. A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11377–11382. doi: 10.1073/pnas.97.21.11377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooney D. A., Jayaram H. N., Gebeyehu G., Betts C. R., Kelley J. A., Marquez V. E., Johns D. G. The conversion of 2-beta-D-ribofuranosylthiazole-4-carboxamide to an analogue of NAD with potent IMP dehydrogenase-inhibitory properties. Biochem Pharmacol. 1982 Jun 1;31(11):2133–2136. doi: 10.1016/0006-2952(82)90436-1. [DOI] [PubMed] [Google Scholar]
  9. Cuzzocrea Salvatore, Chatterjee Prabal K., Mazzon Emanuela, Dugo Laura, Serraino Ivana, Britti Domenico, Mazzullo Giuseppe, Caputi Achille P., Thiemermann Christoph. Pyrrolidine dithiocarbamate attenuates the development of acute and chronic inflammation. Br J Pharmacol. 2002 Jan;135(2):496–510. doi: 10.1038/sj.bjp.0704463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cuzzocrea Salvatore, McDonald Michelle C., Mazzon Emanuela, Dugo Laura, Serraino Ivana, Threadgill Mike, Caputi Achille P., Thiemermann Christoph. Effects of 5-aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly (ADP-ribose) polymerase, in a rodent model of lung injury. Biochem Pharmacol. 2002 Jan 15;63(2):293–304. doi: 10.1016/s0006-2952(01)00864-4. [DOI] [PubMed] [Google Scholar]
  11. Denicola-Seoane A., Anderson B. M. Studies of NAD kinase and NMN:ATP adenylyltransferase in Haemophilus influenzae. J Gen Microbiol. 1990 Mar;136(3):425–430. doi: 10.1099/00221287-136-3-425. [DOI] [PubMed] [Google Scholar]
  12. Emanuelli M., Carnevali F., Lorenzi M., Raffaelli N., Amici A., Ruggieri S., Magni G. Identification and characterization of YLR328W, the Saccharomyces cerevisiae structural gene encoding NMN adenylyltransferase. Expression and characterization of the recombinant enzyme. FEBS Lett. 1999 Jul 16;455(1-2):13–17. doi: 10.1016/s0014-5793(99)00852-2. [DOI] [PubMed] [Google Scholar]
  13. Emanuelli M., Carnevali F., Saccucci F., Pierella F., Amici A., Raffaelli N., Magni G. Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase. J Biol Chem. 2001 Jan 5;276(1):406–412. doi: 10.1074/jbc.M008700200. [DOI] [PubMed] [Google Scholar]
  14. Emanuelli Monica, Amici Adolfo, Carnevali Francesco, Pierella Francesca, Raffaelli Nadia, Magni Giulio. Identification and characterization of a second NMN adenylyltransferase gene in Saccharomyces cerevisiae. Protein Expr Purif. 2003 Feb;27(2):357–364. doi: 10.1016/s1046-5928(02)00645-9. [DOI] [PubMed] [Google Scholar]
  15. Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000 Jul 21;300(4):1005–1016. doi: 10.1006/jmbi.2000.3903. [DOI] [PubMed] [Google Scholar]
  16. Fernando F. Shama, Conforti Laura, Tosi Sabrina, Smith A. David, Coleman Michael P. Human homologue of a gene mutated in the slow Wallerian degeneration (C57BL/Wld(s)) mouse. Gene. 2002 Feb 6;284(1-2):23–29. doi: 10.1016/s0378-1119(02)00394-3. [DOI] [PubMed] [Google Scholar]
  17. Fisher C. L., Pei G. K. Modification of a PCR-based site-directed mutagenesis method. Biotechniques. 1997 Oct;23(4):570-1, 574. doi: 10.2144/97234bm01. [DOI] [PubMed] [Google Scholar]
  18. Garavaglia Silvia, D'Angelo Igor, Emanuelli Monica, Carnevali Francesco, Pierella Francesca, Magni Giulio, Rizzi Menico. Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. J Biol Chem. 2001 Dec 19;277(10):8524–8530. doi: 10.1074/jbc.M111589200. [DOI] [PubMed] [Google Scholar]
  19. Gonzalez Cristina, Ménissier De Murcia Josiane, Janiak Philip, Bidouard Jean-Pierre, Beauvais Catherine, Karray Saoussen, Garchon Henri-Jean, Lévi-Strauss Matthieu. Unexpected sensitivity of nonobese diabetic mice with a disrupted poly(ADP-Ribose) polymerase-1 gene to streptozotocin-induced and spontaneous diabetes. Diabetes. 2002 May;51(5):1470–1476. doi: 10.2337/diabetes.51.5.1470. [DOI] [PubMed] [Google Scholar]
  20. Jayaram H. N., Lapis E., Tricot G., Kneebone P., Paulik E., Zhen W., Engeler G. P., Hoffman R., Weber G. Clinical pharmacokinetic study of tiazofurin administered as a 1-hour infusion. Int J Cancer. 1992 May 8;51(2):182–188. doi: 10.1002/ijc.2910510204. [DOI] [PubMed] [Google Scholar]
  21. Jayaram H. N., Zhen W., Gharehbaghi K. Biochemical consequences of resistance to tiazofurin in human myelogenous leukemic K562 cells. Cancer Res. 1993 May 15;53(10 Suppl):2344–2348. [PubMed] [Google Scholar]
  22. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Leslie R. D., Elliott R. B. Early environmental events as a cause of IDDM. Evidence and implications. Diabetes. 1994 Jul;43(7):843–850. doi: 10.2337/diab.43.7.843. [DOI] [PubMed] [Google Scholar]
  24. Letondal C. A Web interface generator for molecular biology programs in Unix. Bioinformatics. 2001 Jan;17(1):73–82. doi: 10.1093/bioinformatics/17.1.73. [DOI] [PubMed] [Google Scholar]
  25. Li G., Segu V. B., Rabaglia M. E., Luo R. H., Kowluru A., Metz S. A. Prolonged depletion of guanosine triphosphate induces death of insulin-secreting cells by apoptosis. Endocrinology. 1998 Sep;139(9):3752–3762. doi: 10.1210/endo.139.9.6207. [DOI] [PubMed] [Google Scholar]
  26. Magni G., Emanuelli M., Amici A., Raffaelli N., Ruggieri S. Purification of human nicotinamide-mononucleotide adenylyltransferase. Methods Enzymol. 1997;280:241–247. doi: 10.1016/s0076-6879(97)80115-2. [DOI] [PubMed] [Google Scholar]
  27. Masutani M., Suzuki H., Kamada N., Watanabe M., Ueda O., Nozaki T., Jishage K., Watanabe T., Sugimoto T., Nakagama H. Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2301–2304. doi: 10.1073/pnas.96.5.2301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McDonald M. C., Mota-Filipe H., Wright J. A., Abdelrahman M., Threadgill M. D., Thompson A. S., Thiemermann C. Effects of 5-aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly (ADP-ribose) polymerase on the organ injury and dysfunction caused by haemorrhagic shock. Br J Pharmacol. 2000 Jun;130(4):843–850. doi: 10.1038/sj.bjp.0703391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mehl R. A., Kinsland C., Begley T. P. Identification of the Escherichia coli nicotinic acid mononucleotide adenylyltransferase gene. J Bacteriol. 2000 Aug;182(15):4372–4374. doi: 10.1128/jb.182.15.4372-4374.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Milanesi L., Muselli M., Arrigo P. Hamming-Clustering method for signals prediction in 5' and 3' regions of eukaryotic genes. Comput Appl Biosci. 1996 Oct;12(5):399–404. doi: 10.1093/bioinformatics/12.5.399. [DOI] [PubMed] [Google Scholar]
  31. Olland Andrea M., Underwood Kathryn W., Czerwinski Robert M., Lo Mei-Chu, Aulabaugh Ann, Bard Joel, Stahl Mark L., Somers William S., Sullivan Francis X., Chopra Rajiv. Identification, characterization, and crystal structure of Bacillus subtilis nicotinic acid mononucleotide adenylyltransferase. J Biol Chem. 2001 Nov 9;277(5):3698–3707. doi: 10.1074/jbc.M109670200. [DOI] [PubMed] [Google Scholar]
  32. Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  33. Raffaelli N., Emanuelli M., Pisani F. M., Amici A., Lorenzi T., Ruggieri S., Magni G. Identification of the archaeal NMN adenylytransferase gene. Mol Cell Biochem. 1999 Mar;193(1-2):99–102. [PubMed] [Google Scholar]
  34. Raffaelli N., Lorenzi T., Amici A., Emanuelli M., Ruggieri S., Magni G. Synechocystis sp. slr0787 protein is a novel bifunctional enzyme endowed with both nicotinamide mononucleotide adenylyltransferase and 'Nudix' hydrolase activities. FEBS Lett. 1999 Feb 12;444(2-3):222–226. doi: 10.1016/s0014-5793(99)00068-x. [DOI] [PubMed] [Google Scholar]
  35. Raffaelli Nadia, Sorci Leonardo, Amici Adolfo, Emanuelli Monica, Mazzola Francesca, Magni Giulio. Identification of a novel human nicotinamide mononucleotide adenylyltransferase. Biochem Biophys Res Commun. 2002 Oct 4;297(4):835–840. doi: 10.1016/s0006-291x(02)02285-4. [DOI] [PubMed] [Google Scholar]
  36. Rogozin I. B., Kochetov A. V., Kondrashov F. A., Koonin E. V., Milanesi L. Presence of ATG triplets in 5' untranslated regions of eukaryotic cDNAs correlates with a 'weak' context of the start codon. Bioinformatics. 2001 Oct;17(10):890–900. doi: 10.1093/bioinformatics/17.10.890. [DOI] [PubMed] [Google Scholar]
  37. Saravia Flavia E., Revsin Yanina, Gonzalez Deniselle Maria Claudia, Gonzalez Susana L., Roig Paulina, Lima Analia, Homo-Delarche Françoise, De Nicola Alejandro F. Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res. 2002 Dec 13;957(2):345–353. doi: 10.1016/s0006-8993(02)03675-2. [DOI] [PubMed] [Google Scholar]
  38. Saridakis V., Christendat D., Kimber M. S., Dharamsi A., Edwards A. M., Pai E. F. Insights into ligand binding and catalysis of a central step in NAD+ synthesis: structures of Methanobacterium thermoautotrophicum NMN adenylyltransferase complexes. J Biol Chem. 2000 Nov 3;276(10):7225–7232. doi: 10.1074/jbc.M008810200. [DOI] [PubMed] [Google Scholar]
  39. Seki N., Ohira M., Nagase T., Ishikawa K., Miyajima N., Nakajima D., Nomura N., Ohara O. Characterization of cDNA clones in size-fractionated cDNA libraries from human brain. DNA Res. 1997 Oct 31;4(5):345–349. doi: 10.1093/dnares/4.5.345. [DOI] [PubMed] [Google Scholar]
  40. Sestini S., Jacomelli G., Pescaglini M., Micheli V., Pompucci G. Enzyme activities leading to NAD synthesis in human lymphocytes. Arch Biochem Biophys. 2000 Jul 15;379(2):277–282. doi: 10.1006/abbi.2000.1888. [DOI] [PubMed] [Google Scholar]
  41. Skaper Stephen D. Poly(ADP-Ribose) polymerase-1 in acute neuronal death and inflammation: a strategy for neuroprotection. Ann N Y Acad Sci. 2003 May;993:217–288. doi: 10.1111/j.1749-6632.2003.tb07532.x. [DOI] [PubMed] [Google Scholar]
  42. Sood R., Bonner T. I., Makalowska I., Stephan D. A., Robbins C. M., Connors T. D., Morgenbesser S. D., Su K., Faruque M. U., Pinkett H. Cloning and characterization of 13 novel transcripts and the human RGS8 gene from the 1q25 region encompassing the hereditary prostate cancer (HPC1) locus. Genomics. 2001 Apr 15;73(2):211–222. doi: 10.1006/geno.2001.6500. [DOI] [PubMed] [Google Scholar]
  43. Vagnozzi R., Marmarou A., Tavazzi B., Signoretti S., Di Pierro D., del Bolgia F., Amorini A. M., Fazzina G., Sherkat S., Lazzarino G. Changes of cerebral energy metabolism and lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury. J Neurotrauma. 1999 Oct;16(10):903–913. doi: 10.1089/neu.1999.16.903. [DOI] [PubMed] [Google Scholar]
  44. Wang M. S., Fang G., Culver D. G., Davis A. A., Rich M. M., Glass J. D. The WldS protein protects against axonal degeneration: a model of gene therapy for peripheral neuropathy. Ann Neurol. 2001 Dec;50(6):773–779. doi: 10.1002/ana.10039. [DOI] [PubMed] [Google Scholar]
  45. Wang M., Wu Y., Culver D. G., Glass J. D. The gene for slow Wallerian degeneration (Wld(s)) is also protective against vincristine neuropathy. Neurobiol Dis. 2001 Feb;8(1):155–161. doi: 10.1006/nbdi.2000.0334. [DOI] [PubMed] [Google Scholar]
  46. Werner Erik, Ziegler Mathias, Lerner Felicitas, Schweiger Manfred, Muller Yves A., Heinemann Udo. Crystallization and preliminary X-ray analysis of human nicotinamide mononucleotide adenylyltransferase (NMNAT). Acta Crystallogr D Biol Crystallogr. 2001 Dec 21;58(Pt 1):140–142. doi: 10.1107/s0907444901017437. [DOI] [PubMed] [Google Scholar]
  47. Zhou Tianjun, Kurnasov Oleg, Tomchick Diana R., Binns Derk D., Grishin Nick V., Marquez Victor E., Osterman Andrei L., Zhang Hong. Structure of human nicotinamide/nicotinic acid mononucleotide adenylyltransferase. Basis for the dual substrate specificity and activation of the oncolytic agent tiazofurin. J Biol Chem. 2002 Jan 11;277(15):13148–13154. doi: 10.1074/jbc.M111469200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES