Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):525–532. doi: 10.1042/BJ20030999

Functional characterization of alpha-glucan,water dikinase, the starch phosphorylating enzyme.

René Mikkelsen 1, Lone Baunsgaard 1, Andreas Blennow 1
PMCID: PMC1223868  PMID: 14525539

Abstract

GWD (alpha-glucan,water dikinase) is the enzyme that catalyses the phosphorylation of starch by a dikinase-type reaction in which the beta-phosphate of ATP is transferred to either the C-6 or the C-3 position of the glycosyl residue of amylopectin. GWD shows similarity in both sequence and reaction mechanism to bacterial PPS (pyruvate,water dikinase) and PPDK (pyruvate,phosphate dikinase). Amino acid sequence alignments identified a conserved histidine residue located in the putative phosphohistidine domain of potato GWD. Site-directed mutagenesis of this histidine residue resulted in an inactive enzyme and loss of autophosphorylation. Native GWD is a homodimer and shows a strict requirement for the presence of alpha-1,6 branch points in its polyglucan substrate, and exhibits a sharp 20-fold increase in activity when the degree of polymerization is increased from 27.8 to 29.5. In spite of the high variability in the degree of starch phosphorylation, GWD proteins are ubiquitous in plants. The overall reaction mechanism of GWD is similar to that of PPS and PPDK, but the GWD family appears to have arisen after divergence of the plant kingdom. The nucleotide-binding domain of GWD exhibits a closer phylogenetic relationship to prokaryotic PPSs than to PPDKs.

Full Text

The Full Text of this article is available as a PDF (156.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  4. Dunaway-Mariano D. Intermediates and energetics in pyruvate phosphate dikinase. Methods Enzymol. 1999;308:149–176. doi: 10.1016/s0076-6879(99)08009-x. [DOI] [PubMed] [Google Scholar]
  5. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  6. Lomako J., Lomako W. M., Whelan W. J., Marchase R. B. Glycogen contains phosphodiester groups that can be introduced by UDPglucose: glycogen glucose 1-phosphotransferase. FEBS Lett. 1993 Aug 30;329(3):263–267. doi: 10.1016/0014-5793(93)80234-l. [DOI] [PubMed] [Google Scholar]
  7. Lorberth R., Ritte G., Willmitzer L., Kossmann J. Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nat Biotechnol. 1998 May;16(5):473–477. doi: 10.1038/nbt0598-473. [DOI] [PubMed] [Google Scholar]
  8. Narindrasorasak S., Bridger W. A. Phosphoenolypyruvate synthetase of Escherichia coli: molecular weight, subunit composition, and identification of phosphohistidine in phosphoenzyme intermediate. J Biol Chem. 1977 May 25;252(10):3121–3127. [PubMed] [Google Scholar]
  9. Nielsen T. H., Wischmann B., Enevoldsen K., Moller B. L. Starch Phosphorylation in Potato Tubers Proceeds Concurrently with de Novo Biosynthesis of Starch. Plant Physiol. 1994 May;105(1):111–117. doi: 10.1104/pp.105.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  11. Ritte Gerhard, Lloyd James R., Eckermann Nora, Rottmann Antje, Kossmann Jens, Steup Martin. The starch-related R1 protein is an alpha -glucan, water dikinase. Proc Natl Acad Sci U S A. 2002 May 14;99(10):7166–7171. doi: 10.1073/pnas.062053099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sakai H., Ohta T. Molecular cloning and nucleotide sequence of the gene for pyruvate kinase of Bacillus stearothermophilus and the production of the enzyme in Escherichia coli. Evidence that the genes for phosphofructokinase and pyruvate kinase constitute an operon. Eur J Biochem. 1993 Feb 1;211(3):851–859. doi: 10.1111/j.1432-1033.1993.tb17618.x. [DOI] [PubMed] [Google Scholar]
  13. Schwall G. P., Safford R., Westcott R. J., Jeffcoat R., Tayal A., Shi Y. C., Gidley M. J., Jobling S. A. Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol. 2000 May;18(5):551–554. doi: 10.1038/75427. [DOI] [PubMed] [Google Scholar]
  14. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Viksø-Nielsen A., Blennow A., Jørgensen K., Kristensen K. H., Jensen A., Møller B. L. Structural, physicochemical, and pasting properties of starches from potato plants with repressed r1-gene. Biomacromolecules. 2001 Fall;2(3):836–843. doi: 10.1021/bm0155165. [DOI] [PubMed] [Google Scholar]
  16. Viksø-Nielsen Anders, Hao-Jie Chen Patrick, Larsson Håkan, Blennow Andreas, Møller Birger Lindberg. Production of highly phosphorylated glycopolymers by expression of R1 in Escherichia coli. Carbohydr Res. 2002 Feb 18;337(4):327–333. doi: 10.1016/s0008-6215(01)00326-3. [DOI] [PubMed] [Google Scholar]
  17. Wischmann B, Hamborg Nielsen T, Lindberg Moller B In vitro biosynthesis of phosphorylated starch in intact potato amyloplasts . Plant Physiol. 1999 Feb;119(2):455–462. doi: 10.1104/pp.119.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yu T. S., Kofler H., Häusler R. E., Hille D., Flügge U. I., Zeeman S. C., Smith A. M., Kossmann J., Lloyd J., Ritte G. The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell. 2001 Aug;13(8):1907–1918. doi: 10.1105/TPC.010091. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES