Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):533–538. doi: 10.1042/BJ20030729

Interleukin-8 binds to syndecan-2 on human endothelial cells.

Yvonne Halden 1, Angelika Rek 1, Werner Atzenhofer 1, Laszlo Szilak 1, Astrid Wabnig 1, Andreas J Kungl 1
PMCID: PMC1223871  PMID: 14527339

Abstract

Application of reverse transcription-PCR to total RNA prepared from TNF-alpha (tumour necrosis factor-alpha)-stimulated HUVECs (human umbilical vein endothelial cells) revealed that the syndecan-2 mRNA was up-regulated by this inflammatory stimulus. By immunoprecipitation using an anti-syndecan-2 antibody on TNF-alpha-stimulated HUVEC lysates, inflammation-induced interleukin-8 was found to be an interaction partner of this HS (heparan sulphate) proteoglycan, but not of any other syndecan on these cells. The glycosylated [Syn2(ect)(+HS)] and non-glycosylated [Syn2(ect)(-HS)] forms of Syn2(ect) (the syndecan-2 ectodomain) were purified from a stably transfected human cell line and from a bacterial expression system respectively. By CD spectroscopy, Syn2(ect) was found to adopt an all-beta secondary structure. The dissociation constant of Syn2(ect)(+HS) with respect to interleukin-8 binding was determined by isothermal fluorescence titrations to be 23 nM. Despite its lack of HS chains, Syn2(ect)(-HS) exhibited significant binding to the chemokine, with a K (d) of >1 microM. Thus, in addition to glycosaminoglycan binding, protein-protein contacts might also contribute to the chemokine-proteoglycan interaction.

Full Text

The Full Text of this article is available as a PDF (114.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alouani S., Gaertner H. F., Mermod J. J., Power C. A., Bacon K. B., Wells T. N., Proudfoot A. E. A fluorescent interleukin-8 receptor probe produced by targetted labelling at the amino terminus. Eur J Biochem. 1995 Jan 15;227(1-2):328–334. doi: 10.1111/j.1432-1033.1995.tb20393.x. [DOI] [PubMed] [Google Scholar]
  2. Capila Ishan, Linhardt Robert J. Heparin-protein interactions. Angew Chem Int Ed Engl. 2002 Feb 1;41(3):391–412. doi: 10.1002/1521-3773(20020201)41:3<390::aid-anie390>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  3. Clasper S., Vekemans S., Fiore M., Plebanski M., Wordsworth P., David G., Jackson D. G. Inducible expression of the cell surface heparan sulfate proteoglycan syndecan-2 (fibroglycan) on human activated macrophages can regulate fibroblast growth factor action. J Biol Chem. 1999 Aug 20;274(34):24113–24123. doi: 10.1074/jbc.274.34.24113. [DOI] [PubMed] [Google Scholar]
  4. Goger Birgit, Halden Yvonne, Rek Angelika, Mösl Roland, Pye David, Gallagher John, Kungl Andreas J. Different affinities of glycosaminoglycan oligosaccharides for monomeric and dimeric interleukin-8: a model for chemokine regulation at inflammatory sites. Biochemistry. 2002 Feb 5;41(5):1640–1646. doi: 10.1021/bi011944j. [DOI] [PubMed] [Google Scholar]
  5. Harada A., Mukaida N., Matsushima K. Interleukin 8 as a novel target for intervention therapy in acute inflammatory diseases. Mol Med Today. 1996 Nov;2(11):482–489. doi: 10.1016/1357-4310(96)10042-3. [DOI] [PubMed] [Google Scholar]
  6. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Klass C. M., Couchman J. R., Woods A. Control of extracellular matrix assembly by syndecan-2 proteoglycan. J Cell Sci. 2000 Feb;113(Pt 3):493–506. doi: 10.1242/jcs.113.3.493. [DOI] [PubMed] [Google Scholar]
  8. Kuschert G. S., Hoogewerf A. J., Proudfoot A. E., Chung C. W., Cooke R. M., Hubbard R. E., Wells T. N., Sanderson P. N. Identification of a glycosaminoglycan binding surface on human interleukin-8. Biochemistry. 1998 Aug 11;37(32):11193–11201. doi: 10.1021/bi972867o. [DOI] [PubMed] [Google Scholar]
  9. Longley R. L., Woods A., Fleetwood A., Cowling G. J., Gallagher J. T., Couchman J. R. Control of morphology, cytoskeleton and migration by syndecan-4. J Cell Sci. 1999 Oct;112(Pt 20):3421–3431. doi: 10.1242/jcs.112.20.3421. [DOI] [PubMed] [Google Scholar]
  10. Lories V., Cassiman J. J., Van den Berghe H., David G. Differential expression of cell surface heparan sulfate proteoglycans in human mammary epithelial cells and lung fibroblasts. J Biol Chem. 1992 Jan 15;267(2):1116–1122. [PubMed] [Google Scholar]
  11. Mertens G., Cassiman J. J., Van den Berghe H., Vermylen J., David G. Cell surface heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and antithrombin III binding properties. J Biol Chem. 1992 Oct 5;267(28):20435–20443. [PubMed] [Google Scholar]
  12. Middleton J., Neil S., Wintle J., Clark-Lewis I., Moore H., Lam C., Auer M., Hub E., Rot A. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell. 1997 Oct 31;91(3):385–395. doi: 10.1016/s0092-8674(00)80422-5. [DOI] [PubMed] [Google Scholar]
  13. Modrowski D., Baslé M., Lomri A., Marie P. J. Syndecan-2 is involved in the mitogenic activity and signaling of granulocyte-macrophage colony-stimulating factor in osteoblasts. J Biol Chem. 2000 Mar 31;275(13):9178–9185. doi: 10.1074/jbc.275.13.9178. [DOI] [PubMed] [Google Scholar]
  14. Oh E. S., Couchman J. R., Woods A. Serine phosphorylation of syndecan-2 proteoglycan cytoplasmic domain. Arch Biochem Biophys. 1997 Aug 1;344(1):67–74. doi: 10.1006/abbi.1997.0180. [DOI] [PubMed] [Google Scholar]
  15. Renné T., Dedio J., David G., Müller-Esterl W. High molecular weight kininogen utilizes heparan sulfate proteoglycans for accumulation on endothelial cells. J Biol Chem. 2000 Oct 27;275(43):33688–33696. doi: 10.1074/jbc.M000313200. [DOI] [PubMed] [Google Scholar]
  16. Rost B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 1996;266:525–539. doi: 10.1016/s0076-6879(96)66033-9. [DOI] [PubMed] [Google Scholar]
  17. Spillmann D., Witt D., Lindahl U. Defining the interleukin-8-binding domain of heparan sulfate. J Biol Chem. 1998 Jun 19;273(25):15487–15493. doi: 10.1074/jbc.273.25.15487. [DOI] [PubMed] [Google Scholar]
  18. Sreerama N., Woody R. W. Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent methods. J Mol Biol. 1994 Sep 30;242(4):497–507. doi: 10.1006/jmbi.1994.1597. [DOI] [PubMed] [Google Scholar]
  19. Tumova S., Woods A., Couchman J. R. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol. 2000 Mar;32(3):269–288. doi: 10.1016/s1357-2725(99)00116-8. [DOI] [PubMed] [Google Scholar]
  20. Woods A., Couchman J. R. Syndecans: synergistic activators of cell adhesion. Trends Cell Biol. 1998 May;8(5):189–192. doi: 10.1016/s0962-8924(98)01244-6. [DOI] [PubMed] [Google Scholar]
  21. Zimmermann P., David G. The syndecans, tuners of transmembrane signaling. FASEB J. 1999;13 (Suppl):S91–S100. doi: 10.1096/fasebj.13.9001.s91. [DOI] [PubMed] [Google Scholar]
  22. Zimmermann P., Tomatis D., Rosas M., Grootjans J., Leenaerts I., Degeest G., Reekmans G., Coomans C., David G. Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments. Mol Biol Cell. 2001 Feb;12(2):339–350. doi: 10.1091/mbc.12.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES