Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):385–394. doi: 10.1042/BJ20031192

Molecular basis of the high-affinity activation of type 1 ryanodine receptors by imperatoxin A.

Chul Won Lee 1, Eun Hui Lee 1, Koh Takeuchi 1, Hideo Takahashi 1, Ichio Shimada 1, Kazuki Sato 1, Song Yub Shin 1, Do Han Kim 1, Jae Il Kim 1
PMCID: PMC1223873  PMID: 14535845

Abstract

Both imperatoxin A (IpTx(a)), a 33-residue peptide toxin from scorpion venom, and peptide A, derived from the II-III loop of dihydropyridine receptor (DHPR), interact specifically with the skeletal ryanodine receptor (RyR1), which is a Ca(2+)-release channel in the sarcoplasmic reticulum, but with considerably different affinities. IpTx(a) activates RyR1 with nanomolar affinity, whereas peptide A activates RyR1 at micromolar concentrations. To investigate the molecular basis for high-affinity activation of RyR1 by IpTx(a), we have determined the NMR solution structure of IpTx(a), and identified its functional surface by using alanine-scanning analogues. A detailed comparison of the functional surface profiles for two peptide activators revealed that IpTx(a) exhibits a large functional surface area (approx. 1900 A(2), where 1 A=0.1 nm), based on a short double-stranded antiparallel beta-sheet structure, while peptide A bears a much smaller functional surface area (approx. 800 A(2)), with the five consecutive basic residues (Arg(681), Lys(682), Arg(683), Arg(684) and Lys(685)) being clustered at the C-terminal end of the alpha-helix. The functional surface of IpTx(a) is composed of six essential residues (Leu(7), Lys(22), Arg(23), Arg(24), Arg(31) and Arg(33)) and several other important residues (His(6), Lys(8), Arg(9), Lys(11), Lys(19), Lys(20), Gly(25), Thr(26), Asn(27) and Lys(30)), indicating that amino acid residues involved in RyR1 activation make up over the half of the toxin molecule with the exception of cysteine residues. Taken together, these results suggest that the site where peptide A binds to RyR1 belongs to a subset of macrosites capable of being occupied by IpTx(a), resulting in differing the affinity and the mode of activation.

Full Text

The Full Text of this article is available as a PDF (311.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Bezanilla F. M., Horowicz P. Twitches in the presence of ethylene glycol bis( -aminoethyl ether)-N,N'-tetracetic acid. Biochim Biophys Acta. 1972 Jun 23;267(3):605–608. doi: 10.1016/0005-2728(72)90194-6. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Campbell K. P., Knudson C. M., Imagawa T., Leung A. T., Sutko J. L., Kahl S. D., Raab C. R., Madson L. Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J Biol Chem. 1987 May 15;262(14):6460–6463. [PubMed] [Google Scholar]
  4. Casarotto M. G., Gibson F., Pace S. M., Curtis S. M., Mulcair M., Dulhunty A. F. A structural requirement for activation of skeletal ryanodine receptors by peptides of the dihydropyridine receptor II-III loop. J Biol Chem. 2000 Apr 21;275(16):11631–11637. doi: 10.1074/jbc.275.16.11631. [DOI] [PubMed] [Google Scholar]
  5. Chen Lili, Estève Eric, Sabatier Jean-Marc, Ronjat Michel, De Waard Michel, Allen Paul D., Pessah Isaac N. Maurocalcine and peptide A stabilize distinct subconductance states of ryanodine receptor type 1, revealing a proportional gating mechanism. J Biol Chem. 2003 Feb 13;278(18):16095–16106. doi: 10.1074/jbc.M209501200. [DOI] [PubMed] [Google Scholar]
  6. Clore G. M., Gronenborn A. M., Nilges M., Ryan C. A. Three-dimensional structure of potato carboxypeptidase inhibitor in solution. A study using nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. Biochemistry. 1987 Dec 1;26(24):8012–8023. doi: 10.1021/bi00398a069. [DOI] [PubMed] [Google Scholar]
  7. Davis J. H., Bradley E. K., Miljanich G. P., Nadasdi L., Ramachandran J., Basus V. J. Solution structure of omega-conotoxin GVIA using 2-D NMR spectroscopy and relaxation matrix analysis. Biochemistry. 1993 Jul 27;32(29):7396–7405. doi: 10.1021/bi00080a009. [DOI] [PubMed] [Google Scholar]
  8. El-Hayek R., Ikemoto N. Identification of the minimum essential region in the II-III loop of the dihydropyridine receptor alpha 1 subunit required for activation of skeletal muscle-type excitation-contraction coupling. Biochemistry. 1998 May 12;37(19):7015–7020. doi: 10.1021/bi972907o. [DOI] [PubMed] [Google Scholar]
  9. Fajloun Z., Kharrat R., Chen L., Lecomte C., Di Luccio E., Bichet D., El Ayeb M., Rochat H., Allen P. D., Pessah I. N. Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates Ca(2+) release channel/ryanodine receptors. FEBS Lett. 2000 Mar 10;469(2-3):179–185. doi: 10.1016/s0014-5793(00)01239-4. [DOI] [PubMed] [Google Scholar]
  10. Grabner M., Dirksen R. T., Suda N., Beam K. G. The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the Bi-directional coupling with the ryanodine receptor. J Biol Chem. 1999 Jul 30;274(31):21913–21919. doi: 10.1074/jbc.274.31.21913. [DOI] [PubMed] [Google Scholar]
  11. Green Daniel, Pace Suzi, Curtis Suzanne M., Sakowska Magdalena, Lamb Graham D., Dulhunty Angela F., Casarotto Marco G. The three-dimensional structural surface of two beta-sheet scorpion toxins mimics that of an alpha-helical dihydropyridine receptor segment. Biochem J. 2003 Mar 1;370(Pt 2):517–527. doi: 10.1042/BJ20021488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gurrola G. B., Arévalo C., Sreekumar R., Lokuta A. J., Walker J. W., Valdivia H. H. Activation of ryanodine receptors by imperatoxin A and a peptide segment of the II-III loop of the dihydropyridine receptor. J Biol Chem. 1999 Mar 19;274(12):7879–7886. doi: 10.1074/jbc.274.12.7879. [DOI] [PubMed] [Google Scholar]
  13. Hutchinson E. G., Thornton J. M. PROMOTIF--a program to identify and analyze structural motifs in proteins. Protein Sci. 1996 Feb;5(2):212–220. doi: 10.1002/pro.5560050204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim D. H., Mkparu F., Kim C. R., Caroll R. F. Alteration of Ca2+ release channel function in sarcoplasmic reticulum of pressure-overload-induced hypertrophic rat heart. J Mol Cell Cardiol. 1994 Nov;26(11):1505–1512. doi: 10.1006/jmcc.1994.1169. [DOI] [PubMed] [Google Scholar]
  15. Kim D. H., Sreter F. A., Ohnishi S. T., Ryan J. F., Roberts J., Allen P. D., Meszaros L. G., Antoniu B., Ikemoto N. Kinetic studies of Ca2+ release from sarcoplasmic reticulum of normal and malignant hyperthermia susceptible pig muscles. Biochim Biophys Acta. 1984 Sep 5;775(3):320–327. doi: 10.1016/0005-2736(84)90187-1. [DOI] [PubMed] [Google Scholar]
  16. Kim J. I., Konishi S., Iwai H., Kohno T., Gouda H., Shimada I., Sato K., Arata Y. Three-dimensional solution structure of the calcium channel antagonist omega-agatoxin IVA: consensus molecular folding of calcium channel blockers. J Mol Biol. 1995 Jul 28;250(5):659–671. doi: 10.1006/jmbi.1995.0406. [DOI] [PubMed] [Google Scholar]
  17. Kim J. I., Takahashi M., Martin-Moutot N., Seagar M. J., Ohtake A., Sato K. Tyr13 is essential for the binding of omega-conotoxin MVIIC to the P/Q-type calcium channel. Biochem Biophys Res Commun. 1995 Sep 14;214(2):305–309. doi: 10.1006/bbrc.1995.2288. [DOI] [PubMed] [Google Scholar]
  18. Kim J. I., Takahashi M., Ogura A., Kohno T., Kudo Y., Sato K. Hydroxyl group of Tyr13 is essential for the activity of omega-conotoxin GVIA, a peptide toxin for N-type calcium channel. J Biol Chem. 1994 Sep 30;269(39):23876–23878. [PubMed] [Google Scholar]
  19. Kim J. I., Takahashi M., Ohtake A., Wakamiya A., Sato K. Tyr13 is essential for the activity of omega-conotoxin MVIIA and GVIA, specific N-type calcium channel blockers. Biochem Biophys Res Commun. 1995 Jan 17;206(2):449–454. doi: 10.1006/bbrc.1995.1063. [DOI] [PubMed] [Google Scholar]
  20. Kohno T., Kim J. I., Kobayashi K., Kodera Y., Maeda T., Sato K. Three-dimensional structure in solution of the calcium channel blocker omega-conotoxin MVIIA. Biochemistry. 1995 Aug 15;34(32):10256–10265. doi: 10.1021/bi00032a020. [DOI] [PubMed] [Google Scholar]
  21. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  22. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  23. Leong P., MacLennan D. H. The cytoplasmic loops between domains II and III and domains III and IV in the skeletal muscle dihydropyridine receptor bind to a contiguous site in the skeletal muscle ryanodine receptor. J Biol Chem. 1998 Nov 6;273(45):29958–29964. doi: 10.1074/jbc.273.45.29958. [DOI] [PubMed] [Google Scholar]
  24. Lu X., Xu L., Meissner G. Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor. J Biol Chem. 1994 Mar 4;269(9):6511–6516. [PubMed] [Google Scholar]
  25. Marty I., Robert M., Villaz M., De Jongh K., Lai Y., Catterall W. A., Ronjat M. Biochemical evidence for a complex involving dihydropyridine receptor and ryanodine receptor in triad junctions of skeletal muscle. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2270–2274. doi: 10.1073/pnas.91.6.2270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mosbah A., Kharrat R., Fajloun Z., Renisio J. G., Blanc E., Sabatier J. M., El Ayeb M., Darbon H. A new fold in the scorpion toxin family, associated with an activity on a ryanodine-sensitive calcium channel. Proteins. 2000 Aug 15;40(3):436–442. doi: 10.1002/1097-0134(20000815)40:3<436::aid-prot90>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  27. Nakai J., Dirksen R. T., Nguyen H. T., Pessah I. N., Beam K. G., Allen P. D. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature. 1996 Mar 7;380(6569):72–75. doi: 10.1038/380072a0. [DOI] [PubMed] [Google Scholar]
  28. Nakai J., Sekiguchi N., Rando T. A., Allen P. D., Beam K. G. Two regions of the ryanodine receptor involved in coupling with L-type Ca2+ channels. J Biol Chem. 1998 May 29;273(22):13403–13406. doi: 10.1074/jbc.273.22.13403. [DOI] [PubMed] [Google Scholar]
  29. Nilges M., Gronenborn A. M., Brünger A. T., Clore G. M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 1988 Apr;2(1):27–38. doi: 10.1093/protein/2.1.27. [DOI] [PubMed] [Google Scholar]
  30. Norton R. S., Pallaghy P. K. The cystine knot structure of ion channel toxins and related polypeptides. Toxicon. 1998 Nov;36(11):1573–1583. doi: 10.1016/s0041-0101(98)00149-4. [DOI] [PubMed] [Google Scholar]
  31. Näbauer M., Callewaert G., Cleemann L., Morad M. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science. 1989 May 19;244(4906):800–803. doi: 10.1126/science.2543067. [DOI] [PubMed] [Google Scholar]
  32. Olivera B. M., Miljanich G. P., Ramachandran J., Adams M. E. Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annu Rev Biochem. 1994;63:823–867. doi: 10.1146/annurev.bi.63.070194.004135. [DOI] [PubMed] [Google Scholar]
  33. Pallaghy P. K., Duggan B. M., Pennington M. W., Norton R. S. Three-dimensional structure in solution of the calcium channel blocker omega-conotoxin. J Mol Biol. 1993 Nov 20;234(2):405–420. doi: 10.1006/jmbi.1993.1595. [DOI] [PubMed] [Google Scholar]
  34. Pallaghy P. K., Nielsen K. J., Craik D. J., Norton R. S. A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory polypeptides. Protein Sci. 1994 Oct;3(10):1833–1839. doi: 10.1002/pro.5560031022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  36. Reily M. D., Thanabal V., Adams M. E. The solution structure of omega-Aga-IVB, a P-type calcium channel antagonist from venom of the funnel web spider, Agelenopsis aperta. J Biomol NMR. 1995 Feb;5(2):122–132. doi: 10.1007/BF00208803. [DOI] [PubMed] [Google Scholar]
  37. Saether O., Craik D. J., Campbell I. D., Sletten K., Juul J., Norman D. G. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry. 1995 Apr 4;34(13):4147–4158. doi: 10.1021/bi00013a002. [DOI] [PubMed] [Google Scholar]
  38. Samsó M., Trujillo R., Gurrola G. B., Valdivia H. H., Wagenknecht T. Three-dimensional location of the imperatoxin A binding site on the ryanodine receptor. J Cell Biol. 1999 Jul 26;146(2):493–499. doi: 10.1083/jcb.146.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sato K., Raymond C., Martin-Moutot N., Sasaki T., Ohtake A., Minami K., Van Renterghem C., Kim J. I., Takahashi M., Seagar M. J. Binding of Ala-scanning analogs of omega-conotoxin MVIIC to N- and P/Q-type calcium channels. FEBS Lett. 2000 Mar 10;469(2-3):147–150. doi: 10.1016/s0014-5793(00)01263-1. [DOI] [PubMed] [Google Scholar]
  40. Sencer S., Papineni R. V., Halling D. B., Pate P., Krol J., Zhang J. Z., Hamilton S. L. Coupling of RYR1 and L-type calcium channels via calmodulin binding domains. J Biol Chem. 2001 Aug 10;276(41):38237–38241. doi: 10.1074/jbc.C100416200. [DOI] [PubMed] [Google Scholar]
  41. Serysheva I. I., Ludtke S. J., Baker M. R., Chiu W., Hamilton S. L. Structure of the voltage-gated L-type Ca2+ channel by electron cryomicroscopy. Proc Natl Acad Sci U S A. 2002 Jul 29;99(16):10370–10375. doi: 10.1073/pnas.162363499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Slavik K. J., Wang J. P., Aghdasi B., Zhang J. Z., Mandel F., Malouf N., Hamilton S. L. A carboxy-terminal peptide of the alpha 1-subunit of the dihydropyridine receptor inhibits Ca(2+)-release channels. Am J Physiol. 1997 May;272(5 Pt 1):C1475–C1481. doi: 10.1152/ajpcell.1997.272.5.C1475. [DOI] [PubMed] [Google Scholar]
  43. Snutch T. P., Reiner P. B. Ca2+ channels: diversity of form and function. Curr Opin Neurobiol. 1992 Jun;2(3):247–253. doi: 10.1016/0959-4388(92)90111-w. [DOI] [PubMed] [Google Scholar]
  44. Tanabe T., Beam K. G., Adams B. A., Niidome T., Numa S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature. 1990 Aug 9;346(6284):567–569. doi: 10.1038/346567a0. [DOI] [PubMed] [Google Scholar]
  45. Tripathy A., Resch W., Xu L., Valdivia H. H., Meissner G. Imperatoxin A induces subconductance states in Ca2+ release channels (ryanodine receptors) of cardiac and skeletal muscle. J Gen Physiol. 1998 May;111(5):679–690. doi: 10.1085/jgp.111.5.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wüthrich K., Billeter M., Braun W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol. 1983 Oct 5;169(4):949–961. doi: 10.1016/s0022-2836(83)80144-2. [DOI] [PubMed] [Google Scholar]
  47. Zamudio F. Z., Gurrola G. B., Arévalo C., Sreekumar R., Walker J. W., Valdivia H. H., Possani L. D. Primary structure and synthesis of Imperatoxin A (IpTx(a)), a peptide activator of Ca2+ release channels/ryanodine receptors. FEBS Lett. 1997 Apr 1;405(3):385–389. doi: 10.1016/s0014-5793(97)00227-5. [DOI] [PubMed] [Google Scholar]
  48. el-Hayek R., Antoniu B., Wang J., Hamilton S. L., Ikemoto N. Identification of calcium release-triggering and blocking regions of the II-III loop of the skeletal muscle dihydropyridine receptor. J Biol Chem. 1995 Sep 22;270(38):22116–22118. doi: 10.1074/jbc.270.38.22116. [DOI] [PubMed] [Google Scholar]
  49. el-Hayek R., Lokuta A. J., Arévalo C., Valdivia H. H. Peptide probe of ryanodine receptor function. Imperatoxin A, a peptide from the venom of the scorpion Pandinus imperator, selectively activates skeletal-type ryanodine receptor isoforms. J Biol Chem. 1995 Dec 1;270(48):28696–28704. doi: 10.1074/jbc.270.48.28696. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES