Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):281–287. doi: 10.1042/BJ20030978

Identification of sequences required for the import of human protoporphyrinogen oxidase to mitochondria.

Rhian R Morgan 1, Rachel Errington 1, George H Elder 1
PMCID: PMC1223874  PMID: 14535846

Abstract

Protoporphyrinogen oxidase (PPOX; EC 1.3.3.4), the penultimate enzyme of haem biosynthesis, is a nucleus-encoded flavoprotein strongly associated with the outer surface of the inner mitochondrial membrane. It is attached to this membrane by an unknown mechanism that appears not to involve a membrane-spanning domain. The pathway for its import to mitochondria and insertion into the inner membrane has not been established. We have fused human PPOXs containing N-terminal deletions, C-terminal deletions or missense mutations to yellow fluorescent protein (YFP) and have used these constructs to investigate the mitochondrial import of PPOX in human cells. We show that all the information required for efficient import is contained within the first 250 amino acid residues of human PPOX and that targeting to mitochondria is prevented by fusion of YFP to the N-terminus. Deletion of between 151 and 175 residues from the N-terminus is required to abolish import, whereas shorter deletions impair its efficiency. Fully efficient targeting appears to require both a major targeting signal, the whole or part of which is contained between residues 151 and 175, and which may be involved in anchoring to the inner mitochondrial membrane, together with interaction between this region and a sequence(s) within the first 150 residues. These features suggest that the mechanism for import of human PPOX to mitochondria differs from those identified for the translocation of nucleus-encoded, membrane-spanning, inner membrane proteins. In addition, a missense mutation outside this region (Val(335)-->Gly) prevented targeting to mitochondria and delayed the appearance of YFP fluorescence. This mutation appeared to prevent import by a direct effect on protein folding rather than by altering a sequence required for targeting. It may lead to sequestration of the PPOX-YFP construct in an unfolded conformation, followed by proteolytic degradation, possibly through enhanced binding to a cytosolic chaperone protein.

Full Text

The Full Text of this article is available as a PDF (260.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnould S., Camadro J. M. The domain structure of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10553–10558. doi: 10.1073/pnas.95.18.10553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnould S., Takahashi M., Camadro J. M. Acylation stabilizes a protease-resistant conformation of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14825–14830. doi: 10.1073/pnas.96.26.14825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beddoe Travis, Lithgow Trevor. Delivery of nascent polypeptides to the mitochondrial surface. Biochim Biophys Acta. 2002 Sep 2;1592(1):35–39. doi: 10.1016/s0167-4889(02)00262-8. [DOI] [PubMed] [Google Scholar]
  4. Camadro J. M., Labbe P. Cloning and characterization of the yeast HEM14 gene coding for protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. J Biol Chem. 1996 Apr 12;271(15):9120–9128. doi: 10.1074/jbc.271.15.9120. [DOI] [PubMed] [Google Scholar]
  5. Camadro J. M., Thome F., Brouillet N., Labbe P. Purification and properties of protoporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. Mitochondrial location and evidence for a precursor form of the protein. J Biol Chem. 1994 Dec 23;269(51):32085–32091. [PubMed] [Google Scholar]
  6. Curran Sean P., Leuenberger Danielle, Schmidt Einhard, Koehler Carla M. The role of the Tim8p-Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins. J Cell Biol. 2002 Sep 9;158(6):1017–1027. doi: 10.1083/jcb.200205124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dailey H. A., Karr S. W. Purification and characterization of murine protoporphyrinogen oxidase. Biochemistry. 1987 May 19;26(10):2697–2701. doi: 10.1021/bi00384a007. [DOI] [PubMed] [Google Scholar]
  8. Dailey T. A., Dailey H. A. Human protoporphyrinogen oxidase: expression, purification, and characterization of the cloned enzyme. Protein Sci. 1996 Jan;5(1):98–105. doi: 10.1002/pro.5560050112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dailey T. A., Dailey H. A., Meissner P., Prasad A. R. Cloning, sequence, and expression of mouse protoporphyrinogen oxidase. Arch Biochem Biophys. 1995 Dec 20;324(2):379–384. doi: 10.1006/abbi.1995.0051. [DOI] [PubMed] [Google Scholar]
  10. DeLeo F. R., Goedken M., McCormick S. J., Nauseef W. M. A novel form of hereditary myeloperoxidase deficiency linked to endoplasmic reticulum/proteasome degradation. J Clin Invest. 1998 Jun 15;101(12):2900–2909. doi: 10.1172/JCI2649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deybach J. C., da Silva V., Grandchamp B., Nordmann Y. The mitochondrial location of protoporphyrinogen oxidase. Eur J Biochem. 1985 Jun 3;149(2):431–435. doi: 10.1111/j.1432-1033.1985.tb08943.x. [DOI] [PubMed] [Google Scholar]
  12. Fabregat M. E., Usac E. F., Franco C., Enrich C., Malaisse W. J., Gomis R., Enric C. Site-directed mutations of the FAD-linked glycerophosphate dehydrogenase gene impairs the mitochondrial anchoring of the enzyme in transfected COS-7 cells. Biochem Biophys Res Commun. 1998 Nov 9;252(1):173–177. doi: 10.1006/bbrc.1998.9632. [DOI] [PubMed] [Google Scholar]
  13. Ferreira G. C., Andrew T. L., Karr S. W., Dailey H. A. Organization of the terminal two enzymes of the heme biosynthetic pathway. Orientation of protoporphyrinogen oxidase and evidence for a membrane complex. J Biol Chem. 1988 Mar 15;263(8):3835–3839. [PubMed] [Google Scholar]
  14. Fölsch H., Gaume B., Brunner M., Neupert W., Stuart R. A. C- to N-terminal translocation of preproteins into mitochondria. EMBO J. 1998 Nov 16;17(22):6508–6515. doi: 10.1093/emboj/17.22.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fölsch H., Guiard B., Neupert W., Stuart R. A. Internal targeting signal of the BCS1 protein: a novel mechanism of import into mitochondria. EMBO J. 1996 Feb 1;15(3):479–487. [PMC free article] [PubMed] [Google Scholar]
  16. Hoogenraad Nicholas J., Ward Linda A., Ryan Michael T. Import and assembly of proteins into mitochondria of mammalian cells. Biochim Biophys Acta. 2002 Sep 2;1592(1):97–105. doi: 10.1016/s0167-4889(02)00268-9. [DOI] [PubMed] [Google Scholar]
  17. Jacobs J. M., Jacobs N. J. Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis. Purification and partial characterization of the enzyme from barley organelles. Biochem J. 1987 May 15;244(1):219–224. doi: 10.1042/bj2440219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kanagawa Y., Shigekiyo T., Aihara K., Akaike M., Azuma H., Matsumoto T. Molecular mechanism of type I congenital heparin cofactor (HC) II deficiency caused by a missense mutation at reactive P2 site: HC II Tokushima. Thromb Haemost. 2001 Jan;85(1):101–107. [PubMed] [Google Scholar]
  19. Kovermann Peter, Truscott Kaye N., Guiard Bernard, Rehling Peter, Sepuri Naresh B., Müller Hanne, Jensen Robert E., Wagner Richard, Pfanner Nikolaus. Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol Cell. 2002 Feb;9(2):363–373. doi: 10.1016/s1097-2765(02)00446-x. [DOI] [PubMed] [Google Scholar]
  20. Lermontova I., Kruse E., Mock H. P., Grimm B. Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8895–8900. doi: 10.1073/pnas.94.16.8895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matringe M., Camadro J. M., Labbe P., Scalla R. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J. 1989 May 15;260(1):231–235. doi: 10.1042/bj2600231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morgan Rhian R., da Silva Vasco, Puy Hervé, Deybach Jean-Charles, Elder George H. Functional studies of mutations in the human protoporphyrinogen oxidase gene in variegate porphyria. Cell Mol Biol (Noisy-le-grand) 2002 Feb;48(1):79–82. [PubMed] [Google Scholar]
  23. Mori M., Morita T., Ikeda F., Amaya Y., Tatibana M., Cohen P. P. Synthesis, intracellular transport, and processing of the precursors for mitochondrial ornithine transcarbamylase and carbamoyl-phosphate synthetase I in isolated hepatocytes. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6056–6060. doi: 10.1073/pnas.78.10.6056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Narita S., Tanaka R., Ito T., Okada K., Taketani S., Inokuchi H. Molecular cloning and characterization of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene. 1996 Dec 5;182(1-2):169–175. doi: 10.1016/s0378-1119(96)00545-8. [DOI] [PubMed] [Google Scholar]
  25. Nigg E. A. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature. 1997 Apr 24;386(6627):779–787. doi: 10.1038/386779a0. [DOI] [PubMed] [Google Scholar]
  26. Nishimura K., Taketani S., Inokuchi H. Cloning of a human cDNA for protoporphyrinogen oxidase by complementation in vivo of a hemG mutant of Escherichia coli. J Biol Chem. 1995 Apr 7;270(14):8076–8080. doi: 10.1074/jbc.270.14.8076. [DOI] [PubMed] [Google Scholar]
  27. Pfanner N., Geissler A. Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol. 2001 May;2(5):339–349. doi: 10.1038/35073006. [DOI] [PubMed] [Google Scholar]
  28. Proulx K. L., Woodard S. I., Dailey H. A. In situ conversion of coproporphyrinogen to heme by murine mitochondria: terminal steps of the heme biosynthetic pathway. Protein Sci. 1993 Jul;2(7):1092–1098. doi: 10.1002/pro.5560020703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schleiff E., McBride H. The central matrix loop drives import of uncoupling protein 1 into mitochondria. J Cell Sci. 2000 Jun;113(Pt 12):2267–2272. doi: 10.1242/jcs.113.12.2267. [DOI] [PubMed] [Google Scholar]
  30. Tsien R. Y. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–544. doi: 10.1146/annurev.biochem.67.1.509. [DOI] [PubMed] [Google Scholar]
  31. Watanabe N., Che F. S., Iwano M., Takayama S., Yoshida S., Isogai A. Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J Biol Chem. 2001 Mar 23;276(23):20474–20481. doi: 10.1074/jbc.M101140200. [DOI] [PubMed] [Google Scholar]
  32. Wiedemann N., Pfanner N., Ryan M. T. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 2001 Mar 1;20(5):951–960. doi: 10.1093/emboj/20.5.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
  34. Yano M., Kanazawa M., Terada K., Namchai C., Yamaizumi M., Hanson B., Hoogenraad N., Mori M. Visualization of mitochondrial protein import in cultured mammalian cells with green fluorescent protein and effects of overexpression of the human import receptor Tom20. J Biol Chem. 1997 Mar 28;272(13):8459–8465. doi: 10.1074/jbc.272.13.8459. [DOI] [PubMed] [Google Scholar]
  35. Young Jason C., Hoogenraad Nicholas J., Hartl F. Ulrich. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell. 2003 Jan 10;112(1):41–50. doi: 10.1016/s0092-8674(02)01250-3. [DOI] [PubMed] [Google Scholar]
  36. von und zu Fraunberg Mikael, Nyröen Tommi, Kauppinen Raili. Mitochondrial targeting of normal and mutant protoporphyrinogen oxidase. J Biol Chem. 2003 Jan 28;278(15):13376–13381. doi: 10.1074/jbc.M300151200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES