Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):509–516. doi: 10.1042/BJ20030938

Fatty acids enhance membrane permeabilization by pro-apoptotic Bax.

Raquel F Epand 1, Jean-Claude Martinou 1, Sylvie Montessuit 1, Richard M Epand 1
PMCID: PMC1223875  PMID: 14535847

Abstract

Fatty acids are known promoters of apoptosis. In the present study, the direct role of fatty acids with regard to their ability to cause membrane permeabilization by Bax was explored. Addition of fatty acids to liposomes in the presence of cations greatly enhanced the permeabilizing activity of Bax, a pro-apoptotic Bcl-2 protein. This provides a putative mechanism for the role of fatty acids in apoptosis. It is not a result of detergent-like properties of fatty acids, since a different micelle-forming amphiphile, dilysocardiolipin, was strongly inhibitory. We also demonstrate that there is a synergistic effect on Bax-induced permeabilization between Ca(2+) and Mg(2+), both on the binding of Bax to liposomes as well as on the induction of the leakage of liposomal contents. Micromolar concentrations of Ca(2+) added externally or submicromolar concentrations of free Ca(2+) present in the medium were sufficient to promote Bax-induced permeabilization synergistically with externally added Mg(2+). These results indicate that Bax can induce leakage from liposomes at ion concentrations resembling those found physiologically. The synergistic effects of Ca(2+) and Mg(2+) were observed with liposomes with different lipid compositions. Thus the action of Bax is strongly modulated by the presence of bivalent cations that can act synergistically, as well as by micelle-forming lipid components that can be either stimulatory or inhibitory.

Full Text

The Full Text of this article is available as a PDF (180.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams C. S., Mansfield K., Perlot R. L., Shapiro I. M. Matrix regulation of skeletal cell apoptosis. Role of calcium and phosphate ions. J Biol Chem. 2001 Mar 14;276(23):20316–20322. doi: 10.1074/jbc.M006492200. [DOI] [PubMed] [Google Scholar]
  2. Antonsson B., Conti F., Ciavatta A., Montessuit S., Lewis S., Martinou I., Bernasconi L., Bernard A., Mermod J. J., Mazzei G. Inhibition of Bax channel-forming activity by Bcl-2. Science. 1997 Jul 18;277(5324):370–372. doi: 10.1126/science.277.5324.370. [DOI] [PubMed] [Google Scholar]
  3. Antonsson B., Montessuit S., Lauper S., Eskes R., Martinou J. C. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J. 2000 Jan 15;345(Pt 2):271–278. [PMC free article] [PubMed] [Google Scholar]
  4. Basañez Gorka, Sharpe Juanita C., Galanis Jennifer, Brandt Teresa B., Hardwick J. Marie, Zimmerberg Joshua. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem. 2002 Oct 14;277(51):49360–49365. doi: 10.1074/jbc.M206069200. [DOI] [PubMed] [Google Scholar]
  5. Bernardi Paolo, Penzo Daniele, Wojtczak Lech. Mitochondrial energy dissipation by fatty acids. Mechanisms and implications for cell death. Vitam Horm. 2002;65:97–126. doi: 10.1016/s0083-6729(02)65061-7. [DOI] [PubMed] [Google Scholar]
  6. Bers D. M., Patton C. W., Nuccitelli R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 1994;40:3–29. doi: 10.1016/s0091-679x(08)61108-5. [DOI] [PubMed] [Google Scholar]
  7. Chalmers Susan, Nicholls David G. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem. 2003 Mar 26;278(21):19062–19070. doi: 10.1074/jbc.M212661200. [DOI] [PubMed] [Google Scholar]
  8. Cheng Jinglei, Ogawa Kumiko, Kuriki Kiyonori, Yokoyama Yoshifumi, Kamiya Takeshi, Seno Kyoji, Okuyama Harumi, Wang Jingwen, Luo Chenhong, Fujii Toshiko. Increased intake of n-3 polyunsaturated fatty acids elevates the level of apoptosis in the normal sigmoid colon of patients polypectomized for adenomas/tumors. Cancer Lett. 2003 Apr 10;193(1):17–24. doi: 10.1016/s0304383502007176. [DOI] [PubMed] [Google Scholar]
  9. Corkey B. E., Duszynski J., Rich T. L., Matschinsky B., Williamson J. R. Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. J Biol Chem. 1986 Feb 25;261(6):2567–2574. [PubMed] [Google Scholar]
  10. Csordás György, Madesh Muniswamy, Antonsson Bruno, Hajnóczky György. tcBid promotes Ca(2+) signal propagation to the mitochondria: control of Ca(2+) permeation through the outer mitochondrial membrane. EMBO J. 2002 May 1;21(9):2198–2206. doi: 10.1093/emboj/21.9.2198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Desmoulin F., Cozzone P. J., Canioni P. Phosphorus-31 nuclear-magnetic-resonance study of phosphorylated metabolites compartmentation, intracellular pH and phosphorylation state during normoxia, hypoxia and ethanol perfusion, in the perfused rat liver. Eur J Biochem. 1987 Jan 2;162(1):151–159. doi: 10.1111/j.1432-1033.1987.tb10555.x. [DOI] [PubMed] [Google Scholar]
  12. Düzgüneş N., Wilschut J., Fraley R., Papahadjopoulos D. Studies on the mechanism of membrane fusion. Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles. Biochim Biophys Acta. 1981 Mar 20;642(1):182–195. doi: 10.1016/0005-2736(81)90148-6. [DOI] [PubMed] [Google Scholar]
  13. Eitel Katrin, Staiger Harald, Brendel Mathias D., Brandhorst Daniel, Bretzel Reinhard G., Häring Hans-Ulrich, Kellerer Monika. Different role of saturated and unsaturated fatty acids in beta-cell apoptosis. Biochem Biophys Res Commun. 2002 Dec 20;299(5):853–856. doi: 10.1016/s0006-291x(02)02752-3. [DOI] [PubMed] [Google Scholar]
  14. Ellens H., Bentz J., Szoka F. C. H+- and Ca2+-induced fusion and destabilization of liposomes. Biochemistry. 1985 Jun 18;24(13):3099–3106. doi: 10.1021/bi00334a005. [DOI] [PubMed] [Google Scholar]
  15. Epand Raquel F., Martinou Jean-Claude, Fornallaz-Mulhauser Monique, Hughes Donald W., Epand Richard M. The apoptotic protein tBid promotes leakage by altering membrane curvature. J Biol Chem. 2002 Jun 24;277(36):32632–32639. doi: 10.1074/jbc.M202396200. [DOI] [PubMed] [Google Scholar]
  16. Epand Raquel F., Martinou Jean-Claude, Montessuit Sylvie, Epand Richard M. Membrane perturbations induced by the apoptotic Bax protein. Biochem J. 2002 Nov 1;367(Pt 3):849–855. doi: 10.1042/BJ20020986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Epand Raquel F., Martinou Jean-Claude, Montessuit Sylvie, Epand Richard M., Yip Christopher M. Direct evidence for membrane pore formation by the apoptotic protein Bax. Biochem Biophys Res Commun. 2002 Nov 15;298(5):744–749. doi: 10.1016/s0006-291x(02)02544-5. [DOI] [PubMed] [Google Scholar]
  18. Eskes R., Antonsson B., Osen-Sand A., Montessuit S., Richter C., Sadoul R., Mazzei G., Nichols A., Martinou J. C. Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol. 1998 Oct 5;143(1):217–224. doi: 10.1083/jcb.143.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Esposti M. Degli. Lipids, cardiolipin and apoptosis: a greasy licence to kill. Cell Death Differ. 2002 Mar;9(3):234–236. doi: 10.1038/sj.cdd.4400997. [DOI] [PubMed] [Google Scholar]
  20. Gogvadze V., Robertson J. D., Zhivotovsky B., Orrenius S. Cytochrome c release occurs via Ca2+-dependent and Ca2+-independent mechanisms that are regulated by Bax. J Biol Chem. 2001 Mar 22;276(22):19066–19071. doi: 10.1074/jbc.M100614200. [DOI] [PubMed] [Google Scholar]
  21. Hardwick J. Marie, Polster Brian M. Bax, along with lipid conspirators, allows cytochrome c to escape mitochondria. Mol Cell. 2002 Nov;10(5):963–965. doi: 10.1016/s1097-2765(02)00751-7. [DOI] [PubMed] [Google Scholar]
  22. Hardy Serge, El-Assaad Wissal, Przybytkowski Ewa, Joly Erik, Prentki Marc, Langelier Yves. Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells. A role for cardiolipin. J Biol Chem. 2003 Jun 12;278(34):31861–31870. doi: 10.1074/jbc.M300190200. [DOI] [PubMed] [Google Scholar]
  23. Healy Declan A., Watson R. William G., Newsholme Philip. Polyunsaturated and monounsaturated fatty acids increase neutral lipid accumulation, caspase activation and apoptosis in a neutrophil-like, differentiated HL-60 cell line. Clin Sci (Lond) 2003 Feb;104(2):171–179. doi: 10.1042/CS20020223. [DOI] [PubMed] [Google Scholar]
  24. Hickson-Bick Diane L. M., Sparagna Genevieve C., Buja L. Maximilian, McMillin Jeanie B. Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS. Am J Physiol Heart Circ Physiol. 2002 Feb;282(2):H656–H664. doi: 10.1152/ajpheart.00726.2001. [DOI] [PubMed] [Google Scholar]
  25. Jain M. K., van Echteld C. J., Ramirez F., de Gier J., de Haas G. H., van Deenen L. L. Association of lysophosphatidylcholine with fatty acids in aqueous phase to form bilayers. Nature. 1980 Apr 3;284(5755):486–487. doi: 10.1038/284486a0. [DOI] [PubMed] [Google Scholar]
  26. Kirkland R. A., Adibhatla R. M., Hatcher J. F., Franklin J. L. Loss of cardiolipin and mitochondria during programmed neuronal death: evidence of a role for lipid peroxidation and autophagy. Neuroscience. 2002;115(2):587–602. doi: 10.1016/s0306-4522(02)00512-2. [DOI] [PubMed] [Google Scholar]
  27. Kong Jennifer Y., Rabkin Simon W. Mitochondrial effects with ceramide-induced cardiac apoptosis are different from those of palmitate. Arch Biochem Biophys. 2003 Apr 15;412(2):196–206. doi: 10.1016/s0003-9861(03)00008-0. [DOI] [PubMed] [Google Scholar]
  28. Kuwana Tomomi, Mackey Mason R., Perkins Guy, Ellisman Mark H., Latterich Martin, Schneiter Roger, Green Douglas R., Newmeyer Donald D. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell. 2002 Nov 1;111(3):331–342. doi: 10.1016/s0092-8674(02)01036-x. [DOI] [PubMed] [Google Scholar]
  29. Leaver H. A., Rizzo M. T., Whittle I. R. Antitumour actions of highly unsaturated fatty acids: cell signalling and apoptosis. Prostaglandins Leukot Essent Fatty Acids. 2002 Jan;66(1):1–3. doi: 10.1054/plef.2001.0333. [DOI] [PubMed] [Google Scholar]
  30. Listenberger L. L., Ory D. S., Schaffer J. E. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem. 2001 Feb 13;276(18):14890–14895. doi: 10.1074/jbc.M010286200. [DOI] [PubMed] [Google Scholar]
  31. Lu Zhao-Hui, Mu Yi-Ming, Wang Bao-An, Li Xie-Ling, Lu Ju-Ming, Li Jiang-Yuan, Pan Chang-Yu, Yanase Toshihiko, Nawata Hajime. Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cell. Biochem Biophys Res Commun. 2003 Apr 18;303(4):1002–1007. doi: 10.1016/s0006-291x(03)00449-2. [DOI] [PubMed] [Google Scholar]
  32. Lutter M., Fang M., Luo X., Nishijima M., Xie X., Wang X. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol. 2000 Oct;2(10):754–761. doi: 10.1038/35036395. [DOI] [PubMed] [Google Scholar]
  33. Maedler Kathrin, Oberholzer José, Bucher Pascal, Spinas Giatgen A., Donath Marc Y. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 2003 Mar;52(3):726–733. doi: 10.2337/diabetes.52.3.726. [DOI] [PubMed] [Google Scholar]
  34. Mansfield K., Rajpurohit R., Shapiro I. M. Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes. J Cell Physiol. 1999 Jun;179(3):276–286. doi: 10.1002/(SICI)1097-4652(199906)179:3<276::AID-JCP5>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  35. Masamune A., Sakai Y., Satoh A., Fujita M., Yoshida M., Shimosegawa T. Lysophosphatidylcholine induces apoptosis in AR42J cells. Pancreas. 2001 Jan;22(1):75–83. doi: 10.1097/00006676-200101000-00014. [DOI] [PubMed] [Google Scholar]
  36. Matsko C. M., Hunter O. C., Rabinowich H., Lotze M. T., Amoscato A. A. Mitochondrial lipid alterations during Fas- and radiation-induced apoptosis. Biochem Biophys Res Commun. 2001 Oct 12;287(5):1112–1120. doi: 10.1006/bbrc.2001.5696. [DOI] [PubMed] [Google Scholar]
  37. McMillin Jeanie B., Dowhan William. Cardiolipin and apoptosis. Biochim Biophys Acta. 2002 Dec 30;1585(2-3):97–107. doi: 10.1016/s1388-1981(02)00329-3. [DOI] [PubMed] [Google Scholar]
  38. Mironova G. D., Gateau-Roesch O., Levrat C., Gritsenko E., Pavlov E., Lazareva A. V., Limarenko E., Rey C., Louisot P., Saris N. E. Palmitic and stearic acids bind Ca2+ with high affinity and form nonspecific channels in black-lipid membranes. Possible relation to Ca2+-activated mitochondrial pores. J Bioenerg Biomembr. 2001 Aug;33(4):319–331. doi: 10.1023/a:1010659323937. [DOI] [PubMed] [Google Scholar]
  39. Newmeyer Donald D., Ferguson-Miller Shelagh. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 2003 Feb 21;112(4):481–490. doi: 10.1016/s0092-8674(03)00116-8. [DOI] [PubMed] [Google Scholar]
  40. Nutt Leta K., Chandra Joya, Pataer Abujiang, Fang Bingliang, Roth Jack A., Swisher Stephen G., O'Neil Roger G., McConkey David J. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem. 2002 Mar 21;277(23):20301–20308. doi: 10.1074/jbc.M201604200. [DOI] [PubMed] [Google Scholar]
  41. Nutt Leta K., Pataer Abujiang, Pahler Jessica, Fang Bingliang, Roth Jack, McConkey David J., Swisher Stephen G. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem. 2001 Dec 6;277(11):9219–9225. doi: 10.1074/jbc.M106817200. [DOI] [PubMed] [Google Scholar]
  42. Ortiz A., Killian J. A., Verkleij A. J., Wilschut J. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Biophys J. 1999 Oct;77(4):2003–2014. doi: 10.1016/S0006-3495(99)77041-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ostrander D. B., Sparagna G. C., Amoscato A. A., McMillin J. B., Dowhan W. Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem. 2001 Aug 10;276(41):38061–38067. doi: 10.1074/jbc.M107067200. [DOI] [PubMed] [Google Scholar]
  44. Ott Martin, Robertson John D., Gogvadze Vladimir, Zhivotovsky Boris, Orrenius Sten. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A. 2002 Jan 29;99(3):1259–1263. doi: 10.1073/pnas.241655498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pan Z., Bhat M. B., Nieminen A. L., Ma J. Synergistic movements of Ca(2+) and Bax in cells undergoing apoptosis. J Biol Chem. 2001 Jun 18;276(34):32257–32263. doi: 10.1074/jbc.M100178200. [DOI] [PubMed] [Google Scholar]
  46. Penzo Daniele, Tagliapietra Chiara, Colonna Raffaele, Petronilli Valeria, Bernardi Paolo. Effects of fatty acids on mitochondria: implications for cell death. Biochim Biophys Acta. 2002 Sep 10;1555(1-3):160–165. doi: 10.1016/s0005-2728(02)00272-4. [DOI] [PubMed] [Google Scholar]
  47. Saito M., Korsmeyer S. J., Schlesinger P. H. BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol. 2000 Aug;2(8):553–555. doi: 10.1038/35019596. [DOI] [PubMed] [Google Scholar]
  48. Schlame M., Rüstow B. Lysocardiolipin formation and reacylation in isolated rat liver mitochondria. Biochem J. 1990 Dec 15;272(3):589–595. doi: 10.1042/bj2720589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Scorrano Luca, Oakes Scott A., Opferman Joseph T., Cheng Emily H., Sorcinelli Mia D., Pozzan Tullio, Korsmeyer Stanley J. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003 Mar 6;300(5616):135–139. doi: 10.1126/science.1081208. [DOI] [PubMed] [Google Scholar]
  50. Shaban Hamdy, Borrás Consuelo, Viña José, Richter Christoph. Phosphatidylglycerol potently protects human retinal pigment epithelial cells against apoptosis induced by A2E, a compound suspected to cause age-related macula degeneration. Exp Eye Res. 2002 Jul;75(1):99–108. doi: 10.1006/exer.2001.1192. [DOI] [PubMed] [Google Scholar]
  51. Taketo Makoto Mark, Sonoshita Masahiro. Phospolipase A2 and apoptosis. Biochim Biophys Acta. 2002 Dec 30;1585(2-3):72–76. doi: 10.1016/s1388-1981(02)00326-8. [DOI] [PubMed] [Google Scholar]
  52. Ulloth Joel E., Casiano Carlos A., De Leon Marino. Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells. J Neurochem. 2003 Feb;84(4):655–668. doi: 10.1046/j.1471-4159.2003.01571.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Van Venetië R., Verkleij A. J. Possible role of non-bilayer lipids in the structure of mitochondria. A freeze-fracture electron microscopy study. Biochim Biophys Acta. 1982 Nov 22;692(3):397–405. doi: 10.1016/0005-2736(82)90390-x. [DOI] [PubMed] [Google Scholar]
  54. Zamzami Naoufal, Kroemer Guido. Apoptosis: mitochondrial membrane permeabilization--the (w)hole story? Curr Biol. 2003 Jan 21;13(2):R71–R73. doi: 10.1016/s0960-9822(02)01433-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES