Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):469–477. doi: 10.1042/BJ20031114

N-Formyl peptide receptor subtypes in human neutrophils activate L-plastin phosphorylation through different signal transduction intermediates.

Marie-Hélène Paclet 1, Clare Davis 1, Peter Kotsonis 1, Jasminka Godovac-Zimmermann 1, Anthony W Segal 1, Lodewijk V Dekker 1
PMCID: PMC1223878  PMID: 14556648

Abstract

We investigated the coupling of the fMLP (N -formyl-L-methionyl-L-leucyl-L-phenylalanine; 'chemotactic peptide') receptor with phosphorylation of the actin-binding protein L-plastin in neutrophils. Using two-dimensional IEF (isoelectric focusing)/PAGE and MALDI-TOF (matrix-assisted laser desorption ionization-time-of-flight)-MS, L-plastin was identified as a major phosphoprotein in fMLP-stimulated neutrophils whose phosphorylation was dependent on phosphoinositide 3-kinase, PLD (phospholipase D) and PKC (protein kinase C) activity. Two fMLP receptor subtypes were identified in neutrophils, characterized by a distinct sensitivity to fMLP and antagonistic peptides. Both receptor subtypes induced the phosphorylation of L-plastin. L-plastin phosphorylation induced by low-affinity fMLP receptors involves an action of phosphoinositide 3-kinase, PLD and PKC isotypes. In contrast, none of these intermediates are utilized by high-affinity fMLP receptors in the phosphorylation of L-plastin. However, the PKC inhibitor Ro-31-8220 inhibits L-plastin phosphorylation induced by the high-affinity fMLP receptor. Thus, an as yet unknown Ro-31-8220-sensitive kinase regulates L-plastin phosphorylation in response to the high-affinity fMLP receptor. The results suggest a model in which receptor subtypes induce a similar endpoint event through different signal-transduction intermediates. This may be relevant in the context of cell migration in which one receptor subpopulation may become desensitized in a concentration gradient of chemoattractant.

Full Text

The Full Text of this article is available as a PDF (254.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boulay F., Naik N., Giannini E., Tardif M., Brouchon L. Phagocyte chemoattractant receptors. Ann N Y Acad Sci. 1997 Dec 15;832:69–84. doi: 10.1111/j.1749-6632.1997.tb46238.x. [DOI] [PubMed] [Google Scholar]
  2. Boulay F., Tardif M., Brouchon L., Vignais P. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry. 1990 Dec 18;29(50):11123–11133. doi: 10.1021/bi00502a016. [DOI] [PubMed] [Google Scholar]
  3. Carp H. Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils. J Exp Med. 1982 Jan 1;155(1):264–275. doi: 10.1084/jem.155.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dahlgren C., Christophe T., Boulay F., Madianos P. N., Rabiet M. J., Karlsson A. The synthetic chemoattractant Trp-Lys-Tyr-Met-Val-DMet activates neutrophils preferentially through the lipoxin A(4) receptor. Blood. 2000 Mar 1;95(5):1810–1818. [PubMed] [Google Scholar]
  5. Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dekker L. V., Leitges M., Altschuler G., Mistry N., McDermott A., Roes J., Segal A. W. Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils. Biochem J. 2000 Apr 1;347(Pt 1):285–289. [PMC free article] [PubMed] [Google Scholar]
  7. Dekker L. V., Parker P. J. Protein kinase C--a question of specificity. Trends Biochem Sci. 1994 Feb;19(2):73–77. doi: 10.1016/0968-0004(94)90038-8. [DOI] [PubMed] [Google Scholar]
  8. Fabbri E., Spisani S., Barbin L., Biondi C., Buzzi M., Traniello S., Zecchini G. P., Ferretti M. E. Studies on fMLP-receptor interaction and signal transduction pathway by means of fMLP-OMe selective analogues. Cell Signal. 2000 Jun;12(6):391–398. doi: 10.1016/s0898-6568(00)00075-9. [DOI] [PubMed] [Google Scholar]
  9. Ferretti M. E., Nalli M., Biondi C., Colamussi M. L., Pavan B., Traniello S., Spisani S. Modulation of neutrophil phospholipase C activity and cyclic AMP levels by fMLP-OMe analogues. Cell Signal. 2001 Apr;13(4):233–240. doi: 10.1016/s0898-6568(01)00140-1. [DOI] [PubMed] [Google Scholar]
  10. Freer R. J., Day A. R., Radding J. A., Schiffmann E., Aswanikumar S., Showell H. J., Becker E. L. Further studies on the structural requirements for synthetic peptide chemoattractants. Biochemistry. 1980 May 27;19(11):2404–2410. doi: 10.1021/bi00552a019. [DOI] [PubMed] [Google Scholar]
  11. Gao J. L., Lee E. J., Murphy P. M. Impaired antibacterial host defense in mice lacking the N-formylpeptide receptor. J Exp Med. 1999 Feb 15;189(4):657–662. doi: 10.1084/jem.189.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hartt J. K., Barish G., Murphy P. M., Gao J. L. N-formylpeptides induce two distinct concentration optima for mouse neutrophil chemotaxis by differential interaction with two N-formylpeptide receptor (FPR) subtypes. Molecular characterization of FPR2, a second mouse neutrophil FPR. J Exp Med. 1999 Sep 6;190(5):741–747. doi: 10.1084/jem.190.5.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hirsch E., Katanaev V. L., Garlanda C., Azzolino O., Pirola L., Silengo L., Sozzani S., Mantovani A., Altruda F., Wymann M. P. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science. 2000 Feb 11;287(5455):1049–1053. doi: 10.1126/science.287.5455.1049. [DOI] [PubMed] [Google Scholar]
  14. Jones S. L., Brown E. J. FcgammaRII-mediated adhesion and phagocytosis induce L-plastin phosphorylation in human neutrophils. J Biol Chem. 1996 Jun 14;271(24):14623–14630. doi: 10.1074/jbc.271.24.14623. [DOI] [PubMed] [Google Scholar]
  15. Jones S. L., Wang J., Turck C. W., Brown E. J. A role for the actin-bundling protein L-plastin in the regulation of leukocyte integrin function. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9331–9336. doi: 10.1073/pnas.95.16.9331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kanaho Y., Kermode J. C., Becker E. L. Comparison of stimulation by chemotactic formyl peptide analogs between GTPase activity in neutrophil plasma membranes and granule enzyme release from intact neutrophils. J Leukoc Biol. 1990 May;47(5):420–428. doi: 10.1002/jlb.47.5.420. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Li Z., Jiang H., Xie W., Zhang Z., Smrcka A. V., Wu D. Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science. 2000 Feb 11;287(5455):1046–1049. doi: 10.1126/science.287.5455.1046. [DOI] [PubMed] [Google Scholar]
  19. Lin C. S., Aebersold R. H., Kent S. B., Varma M., Leavitt J. Molecular cloning and characterization of plastin, a human leukocyte protein expressed in transformed human fibroblasts. Mol Cell Biol. 1988 Nov;8(11):4659–4668. doi: 10.1128/mcb.8.11.4659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lopez I., Burns D. J., Lambeth J. D. Regulation of phospholipase D by protein kinase C in human neutrophils. Conventional isoforms of protein kinase C phosphorylate a phospholipase D-related component in the plasma membrane. J Biol Chem. 1995 Aug 18;270(33):19465–19472. doi: 10.1074/jbc.270.33.19465. [DOI] [PubMed] [Google Scholar]
  21. López-Lluch G., Bird M. M., Canas B., Godovac-Zimmerman J., Ridley A., Segal A. W., Dekker L. V. Protein kinase C-delta C2-like domain is a binding site for actin and enables actin redistribution in neutrophils. Biochem J. 2001 Jul 1;357(Pt 1):39–47. doi: 10.1042/0264-6021:3570039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mann M. Quantitative proteomics? Nat Biotechnol. 1999 Oct;17(10):954–955. doi: 10.1038/13646. [DOI] [PubMed] [Google Scholar]
  23. Marasco W. A., Phan S. H., Krutzsch H., Showell H. J., Feltner D. E., Nairn R., Becker E. L., Ward P. A. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem. 1984 May 10;259(9):5430–5439. [PubMed] [Google Scholar]
  24. Murphy P. M., Ozçelik T., Kenney R. T., Tiffany H. L., McDermott D., Francke U. A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J Biol Chem. 1992 Apr 15;267(11):7637–7643. [PubMed] [Google Scholar]
  25. Naccache P. H., Levasseur S., Lachance G., Chakravarti S., Bourgoin S. G., McColl S. R. Stimulation of human neutrophils by chemotactic factors is associated with the activation of phosphatidylinositol 3-kinase gamma. J Biol Chem. 2000 Aug 4;275(31):23636–23641. doi: 10.1074/jbc.M001780200. [DOI] [PubMed] [Google Scholar]
  26. Newton A. C. Regulation of protein kinase C. Curr Opin Cell Biol. 1997 Apr;9(2):161–167. doi: 10.1016/s0955-0674(97)80058-0. [DOI] [PubMed] [Google Scholar]
  27. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  28. Palmer R. H., Dekker L. V., Woscholski R., Le Good J. A., Gigg R., Parker P. J. Activation of PRK1 by phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. A comparison with protein kinase C isotypes. J Biol Chem. 1995 Sep 22;270(38):22412–22416. doi: 10.1074/jbc.270.38.22412. [DOI] [PubMed] [Google Scholar]
  29. Quehenberger O., Prossnitz E. R., Cavanagh S. L., Cochrane C. G., Ye R. D. Multiple domains of the N-formyl peptide receptor are required for high-affinity ligand binding. Construction and analysis of chimeric N-formyl peptide receptors. J Biol Chem. 1993 Aug 25;268(24):18167–18175. [PubMed] [Google Scholar]
  30. Rosales C., Jones S. L., McCourt D., Brown E. J. Bromophenacyl bromide binding to the actin-bundling protein l-plastin inhibits inositol trisphosphate-independent increase in Ca2+ in human neutrophils. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3534–3538. doi: 10.1073/pnas.91.9.3534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rossi F., Grzeskowiak M., Della Bianca V., Calzetti F., Gandini G. Phosphatidic acid and not diacylglycerol generated by phospholipase D is functionally linked to the activation of the NADPH oxidase by FMLP in human neutrophils. Biochem Biophys Res Commun. 1990 Apr 16;168(1):320–327. doi: 10.1016/0006-291x(90)91711-z. [DOI] [PubMed] [Google Scholar]
  32. Schiffmann E., Aswanikumar S., Venkatasubramanian K., Corcoran B. A., Pert C. B., Brown J., Gross E., Day A. R., Freer R. J., Showell A. H. Some characteristics of the neutrophil receptor for chemotactic peptides. FEBS Lett. 1980 Aug 11;117(1):1–7. doi: 10.1016/0014-5793(80)80900-8. [DOI] [PubMed] [Google Scholar]
  33. Schiffmann E., Corcoran B. A., Wahl S. M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1059–1062. doi: 10.1073/pnas.72.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Segal A. W., Jones O. T. Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease. FEBS Lett. 1980 Jan 28;110(1):111–114. doi: 10.1016/0014-5793(80)80035-4. [DOI] [PubMed] [Google Scholar]
  35. Stephens L. R., Eguinoa A., Erdjument-Bromage H., Lui M., Cooke F., Coadwell J., Smrcka A. S., Thelen M., Cadwallader K., Tempst P. The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell. 1997 Apr 4;89(1):105–114. doi: 10.1016/s0092-8674(00)80187-7. [DOI] [PubMed] [Google Scholar]
  36. Stoyanov B., Volinia S., Hanck T., Rubio I., Loubtchenkov M., Malek D., Stoyanova S., Vanhaesebroeck B., Dhand R., Nürnberg B. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science. 1995 Aug 4;269(5224):690–693. doi: 10.1126/science.7624799. [DOI] [PubMed] [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tsao L. T., Wang J. P. Translocation of protein kinase C isoforms in rat neutrophils. Biochem Biophys Res Commun. 1997 May 19;234(2):412–418. doi: 10.1006/bbrc.1997.6656. [DOI] [PubMed] [Google Scholar]
  39. Wang J., Brown E. J. Immune complex-induced integrin activation and L-plastin phosphorylation require protein kinase A. J Biol Chem. 1999 Aug 20;274(34):24349–24356. doi: 10.1074/jbc.274.34.24349. [DOI] [PubMed] [Google Scholar]
  40. Wang J., Chen H., Brown E. J. L-plastin peptide activation of alpha(v)beta(3)-mediated adhesion requires integrin conformational change and actin filament disassembly. J Biol Chem. 2001 Jan 30;276(17):14474–14481. doi: 10.1074/jbc.M007324200. [DOI] [PubMed] [Google Scholar]
  41. Ways D. K., Cook P. P., Webster C., Parker P. J. Effect of phorbol esters on protein kinase C-zeta. J Biol Chem. 1992 Mar 5;267(7):4799–4805. [PubMed] [Google Scholar]
  42. Wenzel-Seifert K., Hurt C. M., Seifert R. High constitutive activity of the human formyl peptide receptor. J Biol Chem. 1998 Sep 11;273(37):24181–24189. doi: 10.1074/jbc.273.37.24181. [DOI] [PubMed] [Google Scholar]
  43. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
  44. Wu D., LaRosa G. J., Simon M. I. G protein-coupled signal transduction pathways for interleukin-8. Science. 1993 Jul 2;261(5117):101–103. doi: 10.1126/science.8316840. [DOI] [PubMed] [Google Scholar]
  45. Yasui K., Komiyama A. Roles of phosphatidylinositol 3-kinase and phospholipase D in temporal activation of superoxide production in FMLP-stimulated human neutrophils. Cell Biochem Funct. 2001 Mar;19(1):43–50. doi: 10.1002/cbf.898. [DOI] [PubMed] [Google Scholar]
  46. Ye R. D., Cavanagh S. L., Quehenberger O., Prossnitz E. R., Cochrane C. G. Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem Biophys Res Commun. 1992 Apr 30;184(2):582–589. doi: 10.1016/0006-291x(92)90629-y. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES