Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):357–366. doi: 10.1042/BJ20031043

Calcium/calmodulin-dependent protein kinase IIdelta associates with the ryanodine receptor complex and regulates channel function in rabbit heart.

Susan Currie 1, Christopher M Loughrey 1, Margaret-Anne Craig 1, Godfrey L Smith 1
PMCID: PMC1223879  PMID: 14556649

Abstract

Cardiac ryanodine receptors (RyR2s) play a critical role in excitation-contraction coupling by providing a pathway for the release of Ca(2+) from the sarcoplasmic reticulum into the cytosol. RyR2s exist as macromolecular complexes that are regulated via binding of Ca(2+) and protein phosphorylation/dephosphorylation. The present study examined the association of endogenous CaMKII (calcium/calmodulin-dependent protein kinase II) with the RyR2 complex and whether this enzyme could modulate RyR2 function in isolated rabbit ventricular myocardium. Endogenous phosphorylation of RyR2 was verified using phosphorylation site-specific antibodies. Co-immunoprecipitation studies established that RyR2 was physically associated with CaMKIIdelta. Quantitative assessment of RyR2 protein was performed by [(3)H]ryanodine binding to RyR2 immunoprecipitates. Parallel kinase assays allowed the endogenous CaMKII activity associated with these immunoprecipitates to be expressed relative to the amount of RyR2. The activity of RyR2 in isolated cardiac myocytes was measured in two ways: (i) RyR2-mediated Ca(2+) release (Ca(2+) sparks) using confocal microscopy and (ii) Ca(2+)-sensitive [(3)H]ryanodine binding. These studies were performed in the presence and absence of AIP (autocamtide-2-related inhibitory peptide), a highly specific inhibitor of CaMKII. At 1 microM AIP Ca(2+) spark duration, frequency and width were decreased significantly. Similarly, 1 microM AIP decreased [(3)H]ryanodine binding. At 5 microM AIP, a more profound inhibition of Ca(2+) sparks and a decrease in [(3)H]ryanodine binding was observed. Separate measurements showed that AIP (1-5 microM) did not affect sarcoplasmic reticulum Ca(2+)-ATPase-mediated Ca(2+) uptake. These results suggest the existence of an endogenous CaMKIIdelta that associates directly with RyR2 and specifically modulates RyR2 activity.

Full Text

The Full Text of this article is available as a PDF (256.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltas L. G., Karczewski P., Krause E. G. The cardiac sarcoplasmic reticulum phospholamban kinase is a distinct delta-CaM kinase isozyme. FEBS Lett. 1995 Oct 2;373(1):71–75. doi: 10.1016/0014-5793(95)00981-e. [DOI] [PubMed] [Google Scholar]
  2. Bandyopadhyay A., Shin D. W., Ahn J. O., Kim D. H. Calcineurin regulates ryanodine receptor/Ca(2+)-release channels in rat heart. Biochem J. 2000 Nov 15;352(Pt 1):61–70. [PMC free article] [PubMed] [Google Scholar]
  3. Brillantes A. B., Ondrias K., Scott A., Kobrinsky E., Ondriasová E., Moschella M. C., Jayaraman T., Landers M., Ehrlich B. E., Marks A. R. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell. 1994 May 20;77(4):513–523. doi: 10.1016/0092-8674(94)90214-3. [DOI] [PubMed] [Google Scholar]
  4. Broekemeier K. M., Krebsbach R. J., Pfeiffer D. R. Inhibition of the mitochondrial Ca2+ uniporter by pure and impure ruthenium red. Mol Cell Biochem. 1994 Oct 12;139(1):33–40. doi: 10.1007/BF00944201. [DOI] [PubMed] [Google Scholar]
  5. Cheng H., Song L. S., Shirokova N., González A., Lakatta E. G., Ríos E., Stern M. D. Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method. Biophys J. 1999 Feb;76(2):606–617. doi: 10.1016/S0006-3495(99)77229-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Currie S., Smith G. L. Calcium/calmodulin-dependent protein kinase II activity is increased in sarcoplasmic reticulum from coronary artery ligated rabbit hearts. FEBS Lett. 1999 Oct 8;459(2):244–248. doi: 10.1016/s0014-5793(99)01254-5. [DOI] [PubMed] [Google Scholar]
  7. Currie S., Smith G. L. Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc Res. 1999 Jan;41(1):135–146. doi: 10.1016/s0008-6363(98)00241-7. [DOI] [PubMed] [Google Scholar]
  8. Enslen H., Sun P., Brickey D., Soderling S. H., Klamo E., Soderling T. R. Characterization of Ca2+/calmodulin-dependent protein kinase IV. Role in transcriptional regulation. J Biol Chem. 1994 Jun 3;269(22):15520–15527. [PubMed] [Google Scholar]
  9. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  10. Hain J., Onoue H., Mayrleitner M., Fleischer S., Schindler H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem. 1995 Feb 3;270(5):2074–2081. doi: 10.1074/jbc.270.5.2074. [DOI] [PubMed] [Google Scholar]
  11. Hittinger L., Ghaleh B., Chen J., Edwards J. G., Kudej R. K., Iwase M., Kim S. J., Vatner S. F., Vatner D. E. Reduced subendocardial ryanodine receptors and consequent effects on cardiac function in conscious dogs with left ventricular hypertrophy. Circ Res. 1999 May 14;84(9):999–1006. doi: 10.1161/01.res.84.9.999. [DOI] [PubMed] [Google Scholar]
  12. Hoch B., Haase H., Schulze W., Hagemann D., Morano I., Krause E. G., Karczewski P. Differentiation-dependent expression of cardiac delta-CaMKII isoforms. J Cell Biochem. 1998 Feb 1;68(2):259–268. [PubMed] [Google Scholar]
  13. Ishida A., Fujisawa H. Stabilization of calmodulin-dependent protein kinase II through the autoinhibitory domain. J Biol Chem. 1995 Feb 3;270(5):2163–2170. doi: 10.1074/jbc.270.5.2163. [DOI] [PubMed] [Google Scholar]
  14. Ishida A., Kameshita I., Okuno S., Kitani T., Fujisawa H. A novel highly specific and potent inhibitor of calmodulin-dependent protein kinase II. Biochem Biophys Res Commun. 1995 Jul 26;212(3):806–812. doi: 10.1006/bbrc.1995.2040. [DOI] [PubMed] [Google Scholar]
  15. Ji Yong, Li Bailing, Reed Thomas D., Lorenz John N., Kaetzel Marcia A., Dedman John R. Targeted inhibition of Ca2+/calmodulin-dependent protein kinase II in cardiac longitudinal sarcoplasmic reticulum results in decreased phospholamban phosphorylation at threonine 17. J Biol Chem. 2003 Apr 12;278(27):25063–25071. doi: 10.1074/jbc.M302193200. [DOI] [PubMed] [Google Scholar]
  16. Kaftan E., Marks A. R., Ehrlich B. E. Effects of rapamycin on ryanodine receptor/Ca(2+)-release channels from cardiac muscle. Circ Res. 1996 Jun;78(6):990–997. doi: 10.1161/01.res.78.6.990. [DOI] [PubMed] [Google Scholar]
  17. Karczewski P., Kuschel M., Baltas L. G., Bartel S., Krause E. G. Site-specific phosphorylation of a phospholamban peptide by cyclic nucleotide- and Ca2+/calmodulin-dependent protein kinases of cardiac sarcoplasmic reticulum. Basic Res Cardiol. 1997;92 (Suppl 1):37–43. doi: 10.1007/BF00794066. [DOI] [PubMed] [Google Scholar]
  18. Kargacin G. J., Ali Z., Kargacin M. E. Ruthenium red reduces the Ca2+ sensitivity of Ca2+ uptake into cardiac sarcoplasmic reticulum. Pflugers Arch. 1998 Aug;436(3):338–342. doi: 10.1007/s004240050641. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Li Yanxia, Kranias Evangelia G., Mignery Gregory A., Bers Donald M. Protein kinase A phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes. Circ Res. 2002 Feb 22;90(3):309–316. doi: 10.1161/hh0302.105660. [DOI] [PubMed] [Google Scholar]
  21. Lokuta A. J., Rogers T. B., Lederer W. J., Valdivia H. H. Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation-dephosphorylation mechanism. J Physiol. 1995 Sep 15;487(Pt 3):609–622. doi: 10.1113/jphysiol.1995.sp020904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Loughrey C. M., MacEachern K. E., Neary P., Smith G. L. The relationship between intracellular [Ca(2+)] and Ca(2+) wave characteristics in permeabilised cardiomyocytes from the rabbit. J Physiol. 2002 Sep 15;543(Pt 3):859–870. doi: 10.1113/jphysiol.2002.021519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lukyanenko V., Gyorke S. Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes. J Physiol. 1999 Dec 15;521(Pt 3):575–585. doi: 10.1111/j.1469-7793.1999.00575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lukyanenko V., Györke I., Subramanian S., Smirnov A., Wiesner T. F., Györke S. Inhibition of Ca(2+) sparks by ruthenium red in permeabilized rat ventricular myocytes. Biophys J. 2000 Sep;79(3):1273–1284. doi: 10.1016/S0006-3495(00)76381-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lukyanenko V., Viatchenko-Karpinski S., Smirnov A., Wiesner T. F., Györke S. Dynamic regulation of sarcoplasmic reticulum Ca(2+) content and release by luminal Ca(2+)-sensitive leak in rat ventricular myocytes. Biophys J. 2001 Aug;81(2):785–798. doi: 10.1016/S0006-3495(01)75741-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Maier Lars S., Zhang Tong, Chen Lu, DeSantiago Jaime, Brown Joan Heller, Bers Donald M. Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res. 2003 Apr 3;92(8):904–911. doi: 10.1161/01.RES.0000069685.20258.F1. [DOI] [PubMed] [Google Scholar]
  27. Marks A. R. Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death. J Mol Cell Cardiol. 2001 Apr;33(4):615–624. doi: 10.1006/jmcc.2000.1343. [DOI] [PubMed] [Google Scholar]
  28. Marks Andrew R., Reiken Steven, Marx Steven O. Progression of heart failure: is protein kinase a hyperphosphorylation of the ryanodine receptor a contributing factor? Circulation. 2002 Jan 22;105(3):272–275. [PubMed] [Google Scholar]
  29. Marx S. O., Reiken S., Hisamatsu Y., Gaburjakova M., Gaburjakova J., Yang Y. M., Rosemblit N., Marks A. R. Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J Cell Biol. 2001 May 14;153(4):699–708. doi: 10.1083/jcb.153.4.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Marx S. O., Reiken S., Hisamatsu Y., Jayaraman T., Burkhoff D., Rosemblit N., Marks A. R. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000 May 12;101(4):365–376. doi: 10.1016/s0092-8674(00)80847-8. [DOI] [PubMed] [Google Scholar]
  31. Milnes J. T., MacLeod K. T. Reduced ryanodine receptor to dihydropyridine receptor ratio may underlie slowed contraction in a rabbit model of left ventricular cardiac hypertrophy. J Mol Cell Cardiol. 2001 Mar;33(3):473–485. doi: 10.1006/jmcc.2000.1320. [DOI] [PubMed] [Google Scholar]
  32. Otsu K., Willard H. F., Khanna V. K., Zorzato F., Green N. M., MacLennan D. H. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem. 1990 Aug 15;265(23):13472–13483. [PubMed] [Google Scholar]
  33. Rodriguez Patricia, Bhogal Moninder S., Colyer John. Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase A. J Biol Chem. 2003 Oct 3;278(40):38593–38600. doi: 10.1074/jbc.C301180200. [DOI] [PubMed] [Google Scholar]
  34. Scott J. D., Pawson T. Cell communication: the inside story. Sci Am. 2000 Jun;282(6):72–79. doi: 10.1038/scientificamerican0600-72. [DOI] [PubMed] [Google Scholar]
  35. Witcher D. R., Kovacs R. J., Schulman H., Cefali D. C., Jones L. R. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem. 1991 Jun 15;266(17):11144–11152. [PubMed] [Google Scholar]
  36. Wu Y., Colbran R. J., Anderson M. E. Calmodulin kinase is a molecular switch for cardiac excitation-contraction coupling. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2877–2881. doi: 10.1073/pnas.051449198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wu Y., MacMillan L. B., McNeill R. B., Colbran R. J., Anderson M. E. CaM kinase augments cardiac L-type Ca2+ current: a cellular mechanism for long Q-T arrhythmias. Am J Physiol. 1999 Jun;276(6 Pt 2):H2168–H2178. doi: 10.1152/ajpheart.1999.276.6.H2168. [DOI] [PubMed] [Google Scholar]
  38. Xu A., Hawkins C., Narayanan N. Phosphorylation and activation of the Ca(2+)-pumping ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin-dependent protein kinase. J Biol Chem. 1993 Apr 25;268(12):8394–8397. [PubMed] [Google Scholar]
  39. Zhang Tong, Maier Lars S., Dalton Nancy D., Miyamoto Shigeki, Ross John, Jr, Bers Donald M., Brown Joan Heller. The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res. 2003 Apr 3;92(8):912–919. doi: 10.1161/01.RES.0000069686.31472.C5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES