Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 15;377(Pt 2):309–316. doi: 10.1042/BJ20030271

Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies.

Susan L Clugston 1, Rieko Yajima 1, John F Honek 1
PMCID: PMC1223881  PMID: 14556652

Abstract

GlxI (glyoxalase I) isomerizes the hemithioacetal formed between glutathione and methylglyoxal. Unlike other GlxI enzymes, Escherichia coli GlxI exhibits no activity with Zn(2+) but maximal activation with Ni(2+). To elucidate further the metal site in E. coli GlxI, several approaches were undertaken. Kinetic studies indicate that the catalytic metal ion affects the k (cat) without significantly affecting the K (m) for the substrate. Inductively coupled plasma analysis and isothermal titration calorimetry confirmed one metal ion bound to the enzyme, including Zn(2+), which produces an inactive enzyme. Isothermal titration calorimetry was utilized to determine the relative binding affinity of GlxI for various bivalent metals. Each metal ion examined bound very tightly to GlxI with an association constant ( K (a))>10(7) M(-1), with the exception of Mn(2+) ( K (a) of the order of 10(6) M(-1)). One of the ligands to the catalytic metal, His(5), was altered to glutamine, a side chain found in the Zn(2+)-active Homo sapiens GlxI. The affinity of the mutant protein for all bivalent metals was drastically decreased. However, low levels of activity were now observed for Zn(2+)-bound GlxI. Although this residue has a marked effect on metal binding and activation, it is not the sole factor determining the differential metal activation between the human and E. coli GlxI enzymes.

Full Text

The Full Text of this article is available as a PDF (150.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. N. Mechanistic diversity in a metalloenzyme superfamily. Biochemistry. 2000 Nov 14;39(45):13625–13632. doi: 10.1021/bi001814v. [DOI] [PubMed] [Google Scholar]
  2. Aronsson A. C., Marmstål E., Mannervik B. Glyoxalase I, a zinc metalloenzyme of mammals and yeast. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1235–1240. doi: 10.1016/0006-291x(78)91268-8. [DOI] [PubMed] [Google Scholar]
  3. Auld D. S. Zinc coordination sphere in biochemical zinc sites. Biometals. 2001 Sep-Dec;14(3-4):271–313. doi: 10.1023/a:1012976615056. [DOI] [PubMed] [Google Scholar]
  4. Bergdoll M., Eltis L. D., Cameron A. D., Dumas P., Bolin J. T. All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly. Protein Sci. 1998 Aug;7(8):1661–1670. doi: 10.1002/pro.5560070801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blanca Giuseppina, Shevelev Igor, Ramadan Kristijan, Villani Giuseppe, Spadari Silvio, Hübscher Ulrich, Maga Giovanni. Human DNA polymerase lambda diverged in evolution from DNA polymerase beta toward specific Mn(++) dependence: a kinetic and thermodynamic study. Biochemistry. 2003 Jun 24;42(24):7467–7476. doi: 10.1021/bi034198m. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Briggner L. E., Wadsö I. Test and calibration processes for microcalorimeters, with special reference to heat conduction instruments used with aqueous systems. J Biochem Biophys Methods. 1991 Feb-Mar;22(2):101–118. doi: 10.1016/0165-022x(91)90023-p. [DOI] [PubMed] [Google Scholar]
  8. Cameron A. D., Olin B., Ridderström M., Mannervik B., Jones T. A. Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping. EMBO J. 1997 Jun 16;16(12):3386–3395. doi: 10.1093/emboj/16.12.3386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cameron A. D., Ridderström M., Olin B., Kavarana M. J., Creighton D. J., Mannervik B. Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue. Biochemistry. 1999 Oct 12;38(41):13480–13490. doi: 10.1021/bi990696c. [DOI] [PubMed] [Google Scholar]
  10. Clugston S. L., Barnard J. F., Kinach R., Miedema D., Ruman R., Daub E., Honek J. F. Overproduction and characterization of a dimeric non-zinc glyoxalase I from Escherichia coli: evidence for optimal activation by nickel ions. Biochemistry. 1998 Jun 16;37(24):8754–8763. doi: 10.1021/bi972791w. [DOI] [PubMed] [Google Scholar]
  11. Clugston S. L., Daub E., Kinach R., Miedema D., Barnard J. F., Honek J. F. Isolation and sequencing of a gene coding for glyoxalase I activity from Salmonella typhimurium and comparison with other glyoxalase I sequences. Gene. 1997 Feb 20;186(1):103–111. doi: 10.1016/s0378-1119(96)00691-9. [DOI] [PubMed] [Google Scholar]
  12. Clugston S. L., Honek J. F. Identification of sequences encoding the detoxification metalloisomerase glyoxalase I in microbial genomes from several pathogenic organisms. J Mol Evol. 2000 May;50(5):491–495. doi: 10.1007/s002390010052. [DOI] [PubMed] [Google Scholar]
  13. Davidson G., Clugston S. L., Honek J. F., Maroney M. J. An XAS investigation of product and inhibitor complexes of Ni-containing GlxI from Escherichia coli: mechanistic implications. Biochemistry. 2001 Apr 17;40(15):4569–4582. doi: 10.1021/bi0018537. [DOI] [PubMed] [Google Scholar]
  14. DiTusa C. A., Christensen T., McCall K. A., Fierke C. A., Toone E. J. Thermodynamics of metal ion binding. 1. Metal ion binding by wild-type carbonic anhydrase. Biochemistry. 2001 May 8;40(18):5338–5344. doi: 10.1021/bi001731e. [DOI] [PubMed] [Google Scholar]
  15. DiTusa C. A., McCall K. A., Christensen T., Mahapatro M., Fierke C. A., Toone E. J. Thermodynamics of metal ion binding. 2. Metal ion binding by carbonic anhydrase variants. Biochemistry. 2001 May 8;40(18):5345–5351. doi: 10.1021/bi0017327. [DOI] [PubMed] [Google Scholar]
  16. Frickel E. M., Jemth P., Widersten M., Mannervik B. Yeast glyoxalase I is a monomeric enzyme with two active sites. J Biol Chem. 2000 Oct 24;276(3):1845–1849. doi: 10.1074/jbc.M005760200. [DOI] [PubMed] [Google Scholar]
  17. Fu H. W., Beese L. S., Casey P. J. Kinetic analysis of zinc ligand mutants of mammalian protein farnesyltransferase. Biochemistry. 1998 Mar 31;37(13):4465–4472. doi: 10.1021/bi972511c. [DOI] [PubMed] [Google Scholar]
  18. Gerlt J. A., Babbitt P. C. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu Rev Biochem. 2001;70:209–246. doi: 10.1146/annurev.biochem.70.1.209. [DOI] [PubMed] [Google Scholar]
  19. He M. M., Clugston S. L., Honek J. F., Matthews B. W. Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation. Biochemistry. 2000 Aug 1;39(30):8719–8727. doi: 10.1021/bi000856g. [DOI] [PubMed] [Google Scholar]
  20. Holm Richard H., Kennepohl Pierre, Solomon Edward I. Structural and Functional Aspects of Metal Sites in Biology. Chem Rev. 1996 Nov 7;96(7):2239–2314. doi: 10.1021/cr9500390. [DOI] [PubMed] [Google Scholar]
  21. Hunt J. A., Ahmed M., Fierke C. A. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues. Biochemistry. 1999 Jul 13;38(28):9054–9062. doi: 10.1021/bi9900166. [DOI] [PubMed] [Google Scholar]
  22. Karlin S., Zhu Z. Y., Karlin K. D. The extended environment of mononuclear metal centers in protein structures. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14225–14230. doi: 10.1073/pnas.94.26.14225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kleifeld Oded, Frenkel Anatoly, Martin Jan M. L., Sagi Irit. Active site electronic structure and dynamics during metalloenzyme catalysis. Nat Struct Biol. 2003 Feb;10(2):98–103. doi: 10.1038/nsb889. [DOI] [PubMed] [Google Scholar]
  24. Ridderström M., Cameron A. D., Jones T. A., Mannervik B. Involvement of an active-site Zn2+ ligand in the catalytic mechanism of human glyoxalase I. J Biol Chem. 1998 Aug 21;273(34):21623–21628. doi: 10.1074/jbc.273.34.21623. [DOI] [PubMed] [Google Scholar]
  25. Ridderström M., Cameron A. D., Jones T. A., Mannervik B. Mutagenesis of residue 157 in the active site of human glyoxalase I. Biochem J. 1997 Nov 15;328(Pt 1):231–235. doi: 10.1042/bj3280231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ridderström M., Mannervik B. Optimized heterologous expression of the human zinc enzyme glyoxalase I. Biochem J. 1996 Mar 1;314(Pt 2):463–467. doi: 10.1042/bj3140463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saint-Jean A. P., Phillips K. R., Creighton D. J., Stone M. J. Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping. Biochemistry. 1998 Jul 21;37(29):10345–10353. doi: 10.1021/bi980868q. [DOI] [PubMed] [Google Scholar]
  28. Sellin S., Eriksson L. E., Mannervik B. Fluorescence and nuclear relaxation enhancement studies of the binding of glutathione derivatives to manganese-reconstituted glyoxalase I from human erythrocytes. A model for the catalytic mechanism of the enzyme involving a hydrated metal ion. Biochemistry. 1982 Sep 28;21(20):4850–4857. doi: 10.1021/bi00263a004. [DOI] [PubMed] [Google Scholar]
  29. Sellin S., Rosevear P. R., Mannervik B., Mildvan A. S. Nuclear relaxation studies of the role of the essential metal in glyoxalase I. J Biol Chem. 1982 Sep 10;257(17):10023–10029. [PubMed] [Google Scholar]
  30. Stokvis E., Clugston S. L., Honek J. F., Heck A. J. Characterization of glyoxalase I (E. coli)-inhibitor interactions by electrospray time-of-flight mass spectrometry and enzyme kinetic analysis. J Protein Chem. 2000 Jul;19(5):389–397. doi: 10.1023/a:1026439531005. [DOI] [PubMed] [Google Scholar]
  31. Thornalley P. J., Edwards L. G., Kang Y., Wyatt C., Davies N., Ladan M. J., Double J. Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of apoptosis. Biochem Pharmacol. 1996 May 17;51(10):1365–1372. doi: 10.1016/0006-2952(96)00059-7. [DOI] [PubMed] [Google Scholar]
  32. Thornalley P. J. Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem Biol Interact. 1998 Apr 24;111-112:137–151. doi: 10.1016/s0009-2797(97)00157-9. [DOI] [PubMed] [Google Scholar]
  33. Vander Jagt D. L., Han L. P. Deuterium isotope effects and chemically modified coenzymes as mechanism probes of yeast glyoxalase-I. Biochemistry. 1973 Dec 4;12(25):5161–5167. doi: 10.1021/bi00749a022. [DOI] [PubMed] [Google Scholar]
  34. Wang Jieyi, Sheppard George S., Lou Pingping, Kawai Megumi, Park Chang, Egan David A., Schneider Andrew, Bouska Jennifer, Lesniewski Rick, Henkin Jack. Physiologically relevant metal cofactor for methionine aminopeptidase-2 is manganese. Biochemistry. 2003 May 6;42(17):5035–5042. doi: 10.1021/bi020670c. [DOI] [PubMed] [Google Scholar]
  35. Whittaker M. M., Whittaker J. W. A glutamate bridge is essential for dimer stability and metal selectivity in manganese superoxide dismutase. J Biol Chem. 1998 Aug 28;273(35):22188–22193. doi: 10.1074/jbc.273.35.22188. [DOI] [PubMed] [Google Scholar]
  36. Williams R. J. P. Metallo-enzyme catalysis. Chem Commun (Camb) 2003 May 21;(10):1109–1113. doi: 10.1039/b211281g. [DOI] [PubMed] [Google Scholar]
  37. Wiseman T., Williston S., Brandts J. F., Lin L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989 May 15;179(1):131–137. doi: 10.1016/0003-2697(89)90213-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES