Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 1;377(Pt 3):617–628. doi: 10.1042/BJ20030582

Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity.

J Oliver McIntyre 1, Barbara Fingleton 1, K Sam Wells 1, David W Piston 1, Conor C Lynch 1, Shiva Gautam 1, Lynn M Matrisian 1
PMCID: PMC1223892  PMID: 14556651

Abstract

The present study describes the in vivo detection and imaging of tumour-associated MMP-7 (matrix metalloproteinase-7 or matrilysin) activity using a novel polymer-based fluorogenic substrate PB-M7VIS, which serves as a selective 'proteolytic beacon' (PB) for this metalloproteinase. PB-M7VIS is built on a PAMAM (polyamido amino) dendrimer core of 14.2 kDa, covalently coupled with an Fl (fluorescein)-labelled peptide Fl(AHX)RPLALWRS(AHX)C (where AHX stands for aminohexanoic acid) and with TMR (tetramethylrhodamine). PB-M7VIS is efficiently and selectively cleaved by MMP-7 with a k (cat)/ K (m) value of 1.9x10(5) M(-1).s(-1) as measured by the rate of increase in Fl fluorescence (up to 17-fold for the cleavage of an optimized PB-M7VIS) with minimal change in the TMR fluorescence. The K (m) value for PB-M7VIS is approx. 0.5 microM, which is approx. two orders of magnitude lower when compared with that for an analogous soluble peptide, indicating efficient interaction of MMP-7 with the synthetic polymeric substrate. With MMP-2 or -3, the k (cat)/ K (m) value for PB-M7VIS is approx. 56- or 13-fold lower respectively, when compared with MMP-7. In PB-M7VIS, Fl(AHX)RPLALWRS(AHX)C is a selective optical sensor of MMP-7 activity and TMR serves to detect both the uncleaved and cleaved reagents. Each of these can be visualized as subcutaneous fluorescent phantoms in a mouse and optically discriminated based on the ratio of green/red (Fl/TMR) fluorescence. The in vivo specificity of PB-M7VIS was tested in a mouse xenograft model. Intravenous administration of PB-M7VIS gave significantly enhanced Fl fluorescence from MMP-7-positive tumours, but not from control tumours ( P <0.0001), both originally derived from SW480 human colon cancer cells. Prior systemic treatment of the tumour-bearing mice with an MMP inhibitor BB-94 ([4-( N -hydroxyamino)-2 R -isobutyl-3 S -(thienylthiomethyl)-succinyl]-L-phenylalanine- N -methylamide), markedly decreased the Fl fluorescence over the MMP-7-positive tumour by approx. 60%. Thus PB-M7VIS functions as a PB for in vivo detection of MMP-7 activity that serves to light this optical beacon and is, therefore, a selective in vivo optical molecular imaging contrast reagent.

Full Text

The Full Text of this article is available as a PDF (390.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bremer C., Tung C. H., Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med. 2001 Jun;7(6):743–748. doi: 10.1038/89126. [DOI] [PubMed] [Google Scholar]
  2. Bremer Christoph, Ntziachristos Vasilis, Weissleder Ralph. Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol. 2002 Aug 13;13(2):231–243. doi: 10.1007/s00330-002-1610-0. [DOI] [PubMed] [Google Scholar]
  3. Brinckerhoff Constance E., Matrisian Lynn M. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol. 2002 Mar;3(3):207–214. doi: 10.1038/nrm763. [DOI] [PubMed] [Google Scholar]
  4. Chen Emily I., Kridel Steven J., Howard Eric W., Li Weizhong, Godzik Adam, Smith Jeffrey W. A unique substrate recognition profile for matrix metalloproteinase-2. J Biol Chem. 2001 Nov 2;277(6):4485–4491. doi: 10.1074/jbc.M109469200. [DOI] [PubMed] [Google Scholar]
  5. Diehl K. H., Hull R., Morton D., Pfister R., Rabemampianina Y., Smith D., Vidal J. M., van de Vorstenbosch C., European Federation of Pharmaceutical Industries Association and European Centre for the Validation of Alternative Methods A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 2001 Jan-Feb;21(1):15–23. doi: 10.1002/jat.727. [DOI] [PubMed] [Google Scholar]
  6. Giambernardi T. A., Grant G. M., Taylor G. P., Hay R. J., Maher V. M., McCormick J. J., Klebe R. J. Overview of matrix metalloproteinase expression in cultured human cells. Matrix Biol. 1998 Mar;16(8):483–496. doi: 10.1016/s0945-053x(98)90019-1. [DOI] [PubMed] [Google Scholar]
  7. Kobayashi H., Sato N., Hiraga A., Saga T., Nakamoto Y., Ueda H., Konishi J., Togashi K., Brechbiel M. W. 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magn Reson Med. 2001 Mar;45(3):454–460. doi: 10.1002/1522-2594(200103)45:3<454::aid-mrm1060>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  8. Kobayashi Hisataka, Kawamoto Satomi, Star Robert A., Waldmann Thomas A., Tagaya Yutaka, Brechbiel Martin W. Micro-magnetic resonance lymphangiography in mice using a novel dendrimer-based magnetic resonance imaging contrast agent. Cancer Res. 2003 Jan 15;63(2):271–276. [PubMed] [Google Scholar]
  9. Kridel Steven J., Sawai Hisako, Ratnikov Boris I., Chen Emily I., Li Weizhong, Godzik Adam, Strongin Alex Y., Smith Jeffrey W. A unique substrate binding mode discriminates membrane type-1 matrix metalloproteinase from other matrix metalloproteinases. J Biol Chem. 2002 Apr 16;277(26):23788–23793. doi: 10.1074/jbc.M111574200. [DOI] [PubMed] [Google Scholar]
  10. Mahmood U., Tung C. H., Bogdanov A., Jr, Weissleder R. Near-infrared optical imaging of protease activity for tumor detection. Radiology. 1999 Dec;213(3):866–870. doi: 10.1148/radiology.213.3.r99dc14866. [DOI] [PubMed] [Google Scholar]
  11. McCawley L. J., Matrisian L. M. Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol. 2001 Oct;13(5):534–540. doi: 10.1016/s0955-0674(00)00248-9. [DOI] [PubMed] [Google Scholar]
  12. Moore S. Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J Biol Chem. 1968 Dec 10;243(23):6281–6283. [PubMed] [Google Scholar]
  13. Netzel-Arnett S., Sang Q. X., Moore W. G., Navre M., Birkedal-Hansen H., Van Wart H. E. Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Biochemistry. 1993 Jun 29;32(25):6427–6432. doi: 10.1021/bi00076a016. [DOI] [PubMed] [Google Scholar]
  14. Newell K. J., Witty J. P., Rodgers W. H., Matrisian L. M. Expression and localization of matrix-degrading metalloproteinases during colorectal tumorigenesis. Mol Carcinog. 1994 Aug;10(4):199–206. doi: 10.1002/mc.2940100404. [DOI] [PubMed] [Google Scholar]
  15. Rudolph-Owen L. A., Chan R., Muller W. J., Matrisian L. M. The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res. 1998 Dec 1;58(23):5500–5506. [PubMed] [Google Scholar]
  16. Smith M. M., Shi L., Navre M. Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries. J Biol Chem. 1995 Mar 24;270(12):6440–6449. doi: 10.1074/jbc.270.12.6440. [DOI] [PubMed] [Google Scholar]
  17. Vargas G., Chan K. F., Thomsen S. L., Welch A. J. Use of osmotically active agents to alter optical properties of tissue: effects on the detected fluorescence signal measured through skin. Lasers Surg Med. 2001;29(3):213–220. doi: 10.1002/lsm.1110. [DOI] [PubMed] [Google Scholar]
  18. Weissleder R., Mahmood U. Molecular imaging. Radiology. 2001 May;219(2):316–333. doi: 10.1148/radiology.219.2.r01ma19316. [DOI] [PubMed] [Google Scholar]
  19. Welch A. R., Holman C. M., Browner M. F., Gehring M. R., Kan C. C., Van Wart H. E. Purification of human matrilysin produced in Escherichia coli and characterization using a new optimized fluorogenic peptide substrate. Arch Biochem Biophys. 1995 Dec 1;324(1):59–64. doi: 10.1006/abbi.1995.9929. [DOI] [PubMed] [Google Scholar]
  20. Whittaker M., Floyd C. D., Brown P., Gearing A. J. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev. 1999 Sep 8;99(9):2735–2776. doi: 10.1021/cr9804543. [DOI] [PubMed] [Google Scholar]
  21. Wilson C. L., Heppner K. J., Labosky P. A., Hogan B. L., Matrisian L. M. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1402–1407. doi: 10.1073/pnas.94.4.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Witty J. P., McDonnell S., Newell K. J., Cannon P., Navre M., Tressler R. J., Matrisian L. M. Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Res. 1994 Sep 1;54(17):4805–4812. [PubMed] [Google Scholar]
  23. Yoo H., Juliano R. L. Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res. 2000 Nov 1;28(21):4225–4231. doi: 10.1093/nar/28.21.4225. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES