Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 1;377(Pt 3):597–605. doi: 10.1042/BJ20031251

Localization of dynein light chains 1 and 2 and their pro-apoptotic ligands.

Catherine L Day 1, Hamsa Puthalakath 1, Gretchen Skea 1, Andreas Strasser 1, Igor Barsukov 1, Lu-Yun Lian 1, David C S Huang 1, Mark G Hinds 1
PMCID: PMC1223895  PMID: 14561217

Abstract

The dynein and myosin V motor complexes are multi-protein structures that function to transport molecules and organelles within the cell. DLC (dynein light-chain) proteins, found as components of both dynein and myosin V motor complexes, connect the complexes to their cargoes. One of the roles of these motor complexes is to selectively sequester the pro-apoptotic 'BH3-only' (Bcl-2 homology 3-only) proteins, Bim (Bcl-2-interacting mediator of cell death) and Bmf (Bcl-2-modifying factor), and so regulate their cell death-inducing function. In vivo DLC2 is found exclusively as a component of the myosin V motor complex and Bmf binds DLC2 selectively. On the other hand, Bim interacts with DLC1 (LC8), an integral component of the dynein motor complex. The two DLCs share 93% sequence identity yet show unambiguous in vivo specificity for their respective BH3-only ligands. To investigate this specificity the three-dimensional solution structure of DLC2 was elucidated using NMR spectroscopy. In vitro structural and mutagenesis studies show that Bmf and Bim have identical binding characteristics to recombinant DLC2 or DLC1. Thus the selectivity shown by Bmf and Bim for binding DLC1 or DLC2, respectively, does not reside in their DLC-binding domains. Remarkably, mutational analysis of DLC1 and DLC2 indicates that a single surface residue (residue 41) determines the specific localization of DLCs with their respective motor complexes. These results suggest a molecular mechanism for the specific compartmentalization of DLCs and their pro-apoptotic cargoes and implicate other protein(s) in defining the specificity between the cargoes and the DLC proteins.

Full Text

The Full Text of this article is available as a PDF (324.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. M., Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998 Aug 28;281(5381):1322–1326. doi: 10.1126/science.281.5381.1322. [DOI] [PubMed] [Google Scholar]
  2. Bouillet P., Metcalf D., Huang D. C., Tarlinton D. M., Kay T. W., Köntgen F., Adams J. M., Strasser A. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science. 1999 Nov 26;286(5445):1735–1738. doi: 10.1126/science.286.5445.1735. [DOI] [PubMed] [Google Scholar]
  3. Bouillet Philippe, Purton Jared F., Godfrey Dale I., Zhang Li-Chen, Coultas Leigh, Puthalakath Hamsa, Pellegrini Marc, Cory Suzanne, Adams Jerry M., Strasser Andreas. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature. 2002 Feb 21;415(6874):922–926. doi: 10.1038/415922a. [DOI] [PubMed] [Google Scholar]
  4. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  5. Day C. L., Dupont C., Lackmann M., Vaux D. L., Hinds M. G. Solution structure and mutagenesis of the caspase recruitment domain (CARD) from Apaf-1. Cell Death Differ. 1999 Nov;6(11):1125–1132. doi: 10.1038/sj.cdd.4400584. [DOI] [PubMed] [Google Scholar]
  6. Duttweiler H. M. A highly sensitive and non-lethal beta-galactosidase plate assay for yeast. Trends Genet. 1996 Sep;12(9):340–341. doi: 10.1016/s0168-9525(96)80008-4. [DOI] [PubMed] [Google Scholar]
  7. Epstein E., Sela-Brown A., Ringel I., Kilav R., King S. M., Benashski S. E., Yisraeli J. K., Silver J., Naveh-Many T. Dynein light chain binding to a 3'-untranslated sequence mediates parathyroid hormone mRNA association with microtubules. J Clin Invest. 2000 Feb;105(4):505–512. doi: 10.1172/JCI8557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Espreafico E. M., Cheney R. E., Matteoli M., Nascimento A. A., De Camilli P. V., Larson R. E., Mooseker M. S. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J Cell Biol. 1992 Dec;119(6):1541–1557. doi: 10.1083/jcb.119.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fan J. S., Zhang Q., Li M., Tochio H., Yamazaki T., Shimizu M., Zhang M. Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. J Biol Chem. 1998 Dec 11;273(50):33472–33481. doi: 10.1074/jbc.273.50.33472. [DOI] [PubMed] [Google Scholar]
  10. Fan J., Zhang Q., Tochio H., Li M., Zhang M. Structural basis of diverse sequence-dependent target recognition by the 8 kDa dynein light chain. J Mol Biol. 2001 Feb 9;306(1):97–108. doi: 10.1006/jmbi.2000.4374. [DOI] [PubMed] [Google Scholar]
  11. Fan Jing-Song, Zhang Qiang, Tochio Hidehito, Zhang Mingjie. Backbone dynamics of the 8 kDa dynein light chain dimer reveals molecular basis of the protein's functional diversity. J Biomol NMR. 2002 Jun;23(2):103–114. doi: 10.1023/a:1016332918178. [DOI] [PubMed] [Google Scholar]
  12. Farmer B. T., 2nd, Constantine K. L., Goldfarb V., Friedrichs M. S., Wittekind M., Yanchunas J., Jr, Robertson J. G., Mueller L. Localizing the NADP+ binding site on the MurB enzyme by NMR. Nat Struct Biol. 1996 Dec;3(12):995–997. doi: 10.1038/nsb1296-995. [DOI] [PubMed] [Google Scholar]
  13. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  14. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998 Jan 23;279(5350):519–526. doi: 10.1126/science.279.5350.519. [DOI] [PubMed] [Google Scholar]
  15. Huang D. C., Adams J. M., Cory S. The conserved N-terminal BH4 domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J. 1998 Feb 16;17(4):1029–1039. doi: 10.1093/emboj/17.4.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang D. C., Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell. 2000 Dec 8;103(6):839–842. doi: 10.1016/s0092-8674(00)00187-2. [DOI] [PubMed] [Google Scholar]
  17. Hwang T. L., van Zijl P. C., Mori S. Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J Biomol NMR. 1998 Feb;11(2):221–226. doi: 10.1023/a:1008276004875. [DOI] [PubMed] [Google Scholar]
  18. Jacob Y., Badrane H., Ceccaldi P. E., Tordo N. Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. J Virol. 2000 Nov;74(21):10217–10222. doi: 10.1128/jvi.74.21.10217-10222.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. King S. M. The dynein microtubule motor. Biochim Biophys Acta. 2000 Mar 17;1496(1):60–75. doi: 10.1016/s0167-4889(00)00009-4. [DOI] [PubMed] [Google Scholar]
  20. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  21. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  22. Lei Kui, Davis Roger J. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A. 2003 Feb 18;100(5):2432–2437. doi: 10.1073/pnas.0438011100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liang J., Jaffrey S. R., Guo W., Snyder S. H., Clardy J. Structure of the PIN/LC8 dimer with a bound peptide. Nat Struct Biol. 1999 Aug;6(8):735–740. doi: 10.1038/11501. [DOI] [PubMed] [Google Scholar]
  24. Linge J. P., Nilges M. Influence of non-bonded parameters on the quality of NMR structures: a new force field for NMR structure calculation. J Biomol NMR. 1999 Jan;13(1):51–59. doi: 10.1023/a:1008365802830. [DOI] [PubMed] [Google Scholar]
  25. Lo K. W., Naisbitt S., Fan J. S., Sheng M., Zhang M. The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif. J Biol Chem. 2001 Jan 8;276(17):14059–14066. doi: 10.1074/jbc.M010320200. [DOI] [PubMed] [Google Scholar]
  26. Ludvigsen S., Poulsen F. M. Positive theta-angles in proteins by nuclear magnetic resonance spectroscopy. J Biomol NMR. 1992 May;2(3):227–233. doi: 10.1007/BF01875318. [DOI] [PubMed] [Google Scholar]
  27. Makokha Moses, Hare Michael, Li Mingang, Hays Thomas, Barbar Elisar. Interactions of cytoplasmic dynein light chains Tctex-1 and LC8 with the intermediate chain IC74. Biochemistry. 2002 Apr 2;41(13):4302–4311. doi: 10.1021/bi011970h. [DOI] [PubMed] [Google Scholar]
  28. Nakano K., Vousden K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001 Mar;7(3):683–694. doi: 10.1016/s1097-2765(01)00214-3. [DOI] [PubMed] [Google Scholar]
  29. O'Connor L., Strasser A., O'Reilly L. A., Hausmann G., Adams J. M., Cory S., Huang D. C. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 1998 Jan 15;17(2):384–395. doi: 10.1093/emboj/17.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Oda E., Ohki R., Murasawa H., Nemoto J., Shibue T., Yamashita T., Tokino T., Taniguchi T., Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 2000 May 12;288(5468):1053–1058. doi: 10.1126/science.288.5468.1053. [DOI] [PubMed] [Google Scholar]
  31. Paschal B. M., Shpetner H. S., Vallee R. B. Purification of brain cytoplasmic dynein and characterization of its in vitro properties. Methods Enzymol. 1991;196:181–191. doi: 10.1016/0076-6879(91)96018-m. [DOI] [PubMed] [Google Scholar]
  32. Puthalakath H., Huang D. C., O'Reilly L. A., King S. M., Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell. 1999 Mar;3(3):287–296. doi: 10.1016/s1097-2765(00)80456-6. [DOI] [PubMed] [Google Scholar]
  33. Puthalakath H., Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 2002 May;9(5):505–512. doi: 10.1038/sj.cdd.4400998. [DOI] [PubMed] [Google Scholar]
  34. Puthalakath H., Villunger A., O'Reilly L. A., Beaumont J. G., Coultas L., Cheney R. E., Huang D. C., Strasser A. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science. 2001 Sep 7;293(5536):1829–1832. doi: 10.1126/science.1062257. [DOI] [PubMed] [Google Scholar]
  35. Raux H., Flamand A., Blondel D. Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol. 2000 Nov;74(21):10212–10216. doi: 10.1128/jvi.74.21.10212-10216.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rodríguez-Crespo I., Yélamos B., Roncal F., Albar J. P., Ortiz de Montellano P. R., Gavilanes F. Identification of novel cellular proteins that bind to the LC8 dynein light chain using a pepscan technique. FEBS Lett. 2001 Aug 17;503(2-3):135–141. doi: 10.1016/s0014-5793(01)02718-1. [DOI] [PubMed] [Google Scholar]
  37. Sodeik B., Ebersold M. W., Helenius A. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol. 1997 Mar 10;136(5):1007–1021. doi: 10.1083/jcb.136.5.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tochio H., Ohki S., Zhang Q., Li M., Zhang M. Solution structure of a protein inhibitor of neuronal nitric oxide synthase. Nat Struct Biol. 1998 Nov;5(11):965–969. doi: 10.1038/2940. [DOI] [PubMed] [Google Scholar]
  39. Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793–1808. doi: 10.1002/yea.320101310. [DOI] [PubMed] [Google Scholar]
  40. Yu J., Zhang L., Hwang P. M., Kinzler K. W., Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell. 2001 Mar;7(3):673–682. doi: 10.1016/s1097-2765(01)00213-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES