Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 1;377(Pt 3):665–674. doi: 10.1042/BJ20030956

Cystinuria-specific rBAT(R365W) mutation reveals two translocation pathways in the amino acid transporter rBAT-b0,+AT.

Marta Pineda 1, Carsten A Wagner 1, Angelika Bröer 1, Paul A Stehberger 1, Simone Kaltenbach 1, Josep Ll Gelpí 1, Rafael Martín Del Río 1, Antonio Zorzano 1, Manuel Palacín 1, Florian Lang 1, Stefan Bröer 1
PMCID: PMC1223896  PMID: 14561219

Abstract

Apical reabsorption of dibasic amino acids and cystine in kidney is mediated by the heteromeric amino acid antiporter rBAT/b(0,+)AT (system b(0,+)). Mutations in rBAT cause cystinuria type A, whereas mutations in b(0,+)AT cause cystinuria type B. b(0,+)AT is the catalytic subunit, whereas it is believed that rBAT helps the routing of the rBAT/b(0,+)AT heterodimeric complex to the plasma membrane. In the present study, we have functionally characterized the cystinuria-specific R365W (Arg(365)-->Trp) mutation of human rBAT, which in addition to a trafficking defect, alters functional properties of the b(0,+) transporter. In oocytes, where human rBAT interacts with the endogenous b(0,+)AT subunit to form an active transporter, the rBAT(R365W) mutation caused a defect of arginine efflux without altering arginine influx or apparent affinities for intracellular or extracellular arginine. Transport of lysine or leucine remained unaffected. In HeLa cells, functional expression of rBAT(R365W)/b(0,+)AT was observed only at the permissive temperature of 33 degrees C. Under these conditions, the mutated transporter showed 50% reduction of arginine influx and a similar decreased accumulation of dibasic amino acids. Efflux of arginine through the rBAT(R365W)/b(0,+)AT holotransporter was completely abolished. This supports a two-translocation-pathway model for antiporter b(0,+), in which the efflux pathway in the rBAT(R365W)/b(0,+)AT holotransporter is defective for arginine translocation or dissociation. This is the first direct evidence that mutations in rBAT may modify transport properties of system b(0,+).

Full Text

The Full Text of this article is available as a PDF (229.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers A., Lahme S., Wagner C., Kaiser P., Zerres K., Capasso G., Pica A., Palacin M., Lang F., Bichler K. H. Mutations in the SLC3A1 gene in cystinuric patients: frequencies and identification of a novel mutation. Genet Test. 1999;3(2):227–231. doi: 10.1089/gte.1999.3.227. [DOI] [PubMed] [Google Scholar]
  2. Bauch Christian, Verrey François. Apical heterodimeric cystine and cationic amino acid transporter expressed in MDCK cells. Am J Physiol Renal Physiol. 2002 Jul;283(1):F181–F189. doi: 10.1152/ajprenal.00212.2001. [DOI] [PubMed] [Google Scholar]
  3. Bertran J., Werner A., Chillarón J., Nunes V., Biber J., Testar X., Zorzano A., Estivill X., Murer H., Palacín M. Expression cloning of a human renal cDNA that induces high affinity transport of L-cystine shared with dibasic amino acids in Xenopus oocytes. J Biol Chem. 1993 Jul 15;268(20):14842–14849. [PubMed] [Google Scholar]
  4. Bertran J., Werner A., Moore M. L., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5601–5605. doi: 10.1073/pnas.89.12.5601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bröer S., Bröer A., Hamprecht B. Expression of Na+-independent isoleucine transport activity from rat brain in Xenopus laevis oocytes. Biochim Biophys Acta. 1994 Jun 1;1192(1):95–100. doi: 10.1016/0005-2736(94)90147-3. [DOI] [PubMed] [Google Scholar]
  6. Bröer Stefan, Wagner Carsten A. Structure-function relationships of heterodimeric amino acid transporters. Cell Biochem Biophys. 2002;36(2-3):155–168. doi: 10.1385/CBB:36:2-3:155. [DOI] [PubMed] [Google Scholar]
  7. Busch A. E., Herzer T., Waldegger S., Schmidt F., Palacin M., Biber J., Markovich D., Murer H., Lang F. Opposite directed currents induced by the transport of dibasic and neutral amino acids in Xenopus oocytes expressing the protein rBAT. J Biol Chem. 1994 Oct 14;269(41):25581–25586. [PubMed] [Google Scholar]
  8. Calonge M. J., Gasparini P., Chillarón J., Chillón M., Gallucci M., Rousaud F., Zelante L., Testar X., Dallapiccola B., Di Silverio F. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet. 1994 Apr;6(4):420–425. doi: 10.1038/ng0494-420. [DOI] [PubMed] [Google Scholar]
  9. Chillarón J., Estévez R., Mora C., Wagner C. A., Suessbrich H., Lang F., Gelpí J. L., Testar X., Busch A. E., Zorzano A. Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem. 1996 Jul 26;271(30):17761–17770. doi: 10.1074/jbc.271.30.17761. [DOI] [PubMed] [Google Scholar]
  10. Chillarón J., Estévez R., Samarzija I., Waldegger S., Testar X., Lang F., Zorzano A., Busch A., Palacín M. An intracellular trafficking defect in type I cystinuria rBAT mutants M467T and M467K. J Biol Chem. 1997 Apr 4;272(14):9543–9549. doi: 10.1074/jbc.272.14.9543. [DOI] [PubMed] [Google Scholar]
  11. Chillarón J., Roca R., Valencia A., Zorzano A., Palacín M. Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am J Physiol Renal Physiol. 2001 Dec;281(6):F995–1018. doi: 10.1152/ajprenal.2001.281.6.F995. [DOI] [PubMed] [Google Scholar]
  12. Coady M. J., Jalal F., Chen X., Lemay G., Berteloot A., Lapointe J. Y. Electrogenic amino acid exchange via the rBAT transporter. FEBS Lett. 1994 Dec 19;356(2-3):174–178. doi: 10.1016/0014-5793(94)01262-8. [DOI] [PubMed] [Google Scholar]
  13. Dello Strologo Luca, Pras Elon, Pontesilli Claudia, Beccia Ercole, Ricci-Barbini Vittorino, de Sanctis Luisa, Ponzone Alberto, Gallucci Michele, Bisceglia Luigi, Zelante Leopoldo. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol. 2002 Oct;13(10):2547–2553. doi: 10.1097/01.asn.0000029586.17680.e5. [DOI] [PubMed] [Google Scholar]
  14. Denning G. M., Anderson M. P., Amara J. F., Marshall J., Smith A. E., Welsh M. J. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature. 1992 Aug 27;358(6389):761–764. doi: 10.1038/358761a0. [DOI] [PubMed] [Google Scholar]
  15. Devés R., Boyd C. A. Surface antigen CD98(4F2): not a single membrane protein, but a family of proteins with multiple functions. J Membr Biol. 2000 Feb 1;173(3):165–177. doi: 10.1007/s002320001017. [DOI] [PubMed] [Google Scholar]
  16. Feliubadaló L., Font M., Purroy J., Rousaud F., Estivill X., Nunes V., Golomb E., Centola M., Aksentijevich I., Kreiss Y. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet. 1999 Sep;23(1):52–57. doi: 10.1038/12652. [DOI] [PubMed] [Google Scholar]
  17. Fernández Esperanza, Carrascal Montserrat, Rousaud Ferran, Abián Joaquín, Zorzano Antonio, Palacín Manuel, Chillarón Josep. rBAT-b(0,+)AT heterodimer is the main apical reabsorption system for cystine in the kidney. Am J Physiol Renal Physiol. 2002 Sep;283(3):F540–F548. doi: 10.1152/ajprenal.00071.2002. [DOI] [PubMed] [Google Scholar]
  18. Font M. A., Feliubadaló L., Estivill X., Nunes V., Golomb E., Kreiss Y., Pras E., Bisceglia L., d'Adamo A. P., Zelante L. Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria. Hum Mol Genet. 2001 Feb 15;10(4):305–316. doi: 10.1093/hmg/10.4.305. [DOI] [PubMed] [Google Scholar]
  19. Gasparini P., Calonge M. J., Bisceglia L., Purroy J., Dianzani I., Notarangelo A., Rousaud F., Gallucci M., Testar X., Ponzone A. Molecular genetics of cystinuria: identification of four new mutations and seven polymorphisms, and evidence for genetic heterogeneity. Am J Hum Genet. 1995 Oct;57(4):781–788. [PMC free article] [PubMed] [Google Scholar]
  20. Meier Christian, Ristic Zorica, Klauser Stefan, Verrey François. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J. 2002 Feb 15;21(4):580–589. doi: 10.1093/emboj/21.4.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mosckovitz R., Udenfriend S., Felix A., Heimer E., Tate S. S. Membrane topology of the rat kidney neutral and basic amino acid transporter. FASEB J. 1994 Oct;8(13):1069–1074. doi: 10.1096/fasebj.8.13.7926373. [DOI] [PubMed] [Google Scholar]
  22. Palacín M., Borsani G., Sebastio G. The molecular bases of cystinuria and lysinuric protein intolerance. Curr Opin Genet Dev. 2001 Jun;11(3):328–335. doi: 10.1016/s0959-437x(00)00198-2. [DOI] [PubMed] [Google Scholar]
  23. Palmieri F., Indiveri C., Bisaccia F., Krämer R. Functional properties of purified and reconstituted mitochondrial metabolite carriers. J Bioenerg Biomembr. 1993 Oct;25(5):525–535. doi: 10.1007/BF01108409. [DOI] [PubMed] [Google Scholar]
  24. Peter G. J., Panova T. B., Christie G. R., Taylor P. M. Cysteine residues in the C-terminus of the neutral- and basic-amino-acid transporter heavy-chain subunit contribute to functional properties of the system b(0,+)-type amino acid transporter. Biochem J. 2000 Nov 1;351(Pt 3):677–682. [PMC free article] [PubMed] [Google Scholar]
  25. Pfeiffer R., Loffing J., Rossier G., Bauch C., Meier C., Eggermann T., Loffing-Cueni D., Kühn L. C., Verrey F. Luminal heterodimeric amino acid transporter defective in cystinuria. Mol Biol Cell. 1999 Dec;10(12):4135–4147. doi: 10.1091/mbc.10.12.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rajan D. P., Huang W., Kekuda R., George R. L., Wang J., Conway S. J., Devoe L. D., Leibach F. H., Prasad P. D., Ganapathy V. Differential influence of the 4F2 heavy chain and the protein related to b(0,+) amino acid transport on substrate affinity of the heteromeric b(0,+) amino acid transporter. J Biol Chem. 2000 May 12;275(19):14331–14335. doi: 10.1074/jbc.275.19.14331. [DOI] [PubMed] [Google Scholar]
  27. Reig Núria, Chillarón Josep, Bartoccioni Paola, Fernández Esperanza, Bendahan Annie, Zorzano Antonio, Kanner Baruch, Palacín Manuel, Bertran Joan. The light subunit of system b(o,+) is fully functional in the absence of the heavy subunit. EMBO J. 2002 Sep 16;21(18):4906–4914. doi: 10.1093/emboj/cdf500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Restrepo D., Cronise B. L., Snyder R. B., Knauf P. A. A novel method to differentiate between ping-pong and simultaneous exchange kinetics and its application to the anion exchanger of the HL60 cell. J Gen Physiol. 1992 Nov;100(5):825–846. doi: 10.1085/jgp.100.5.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saadi I., Chen X. Z., Hediger M., Ong P., Pereira P., Goodyer P., Rozen R. Molecular genetics of cystinuria: mutation analysis of SLC3A1 and evidence for another gene in type I (silent) phenotype. Kidney Int. 1998 Jul;54(1):48–55. doi: 10.1046/j.1523-1755.1998.00956.x. [DOI] [PubMed] [Google Scholar]
  30. Stegen C., Matskevich I., Wagner C. A., Paulmichl M., Lang F., Bröer S. Swelling-induced taurine release without chloride channel activity in Xenopus laevis oocytes expressing anion channels and transporters. Biochim Biophys Acta. 2000 Jul 31;1467(1):91–100. doi: 10.1016/s0005-2736(00)00209-1. [DOI] [PubMed] [Google Scholar]
  31. Torras-Llort M., Torrents D., Soriano-García J. F., Gelpí J. L., Estévez R., Ferrer R., Palacín M., Moretó M. Sequential amino acid exchange across b(0,+)-like system in chicken brush border jejunum. J Membr Biol. 2001 Apr 1;180(3):213–220. doi: 10.1007/s002320010072. [DOI] [PubMed] [Google Scholar]
  32. Verrey F., Jack D. L., Paulsen I. T., Saier M. H., Jr, Pfeiffer R. New glycoprotein-associated amino acid transporters. J Membr Biol. 1999 Dec 1;172(3):181–192. doi: 10.1007/s002329900595. [DOI] [PubMed] [Google Scholar]
  33. Verrey F., Meier C., Rossier G., Kühn L. C. Glycoprotein-associated amino acid exchangers: broadening the range of transport specificity. Pflugers Arch. 2000 Aug;440(4):503–512. doi: 10.1007/s004240000274. [DOI] [PubMed] [Google Scholar]
  34. Wagner C. A., Friedrich B., Setiawan I., Lang F., Bröer S. The use of Xenopus laevis oocytes for the functional characterization of heterologously expressed membrane proteins. Cell Physiol Biochem. 2000;10(1-2):1–12. doi: 10.1159/000016341. [DOI] [PubMed] [Google Scholar]
  35. Wagner C. A., Lang F., Bröer S. Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol. 2001 Oct;281(4):C1077–C1093. doi: 10.1152/ajpcell.2001.281.4.C1077. [DOI] [PubMed] [Google Scholar]
  36. Wang Y., Tate S. S. Oligomeric structure of a renal cystine transporter: implications in cystinuria. FEBS Lett. 1995 Jul 17;368(2):389–392. doi: 10.1016/0014-5793(95)00685-3. [DOI] [PubMed] [Google Scholar]
  37. Ward C. L., Kopito R. R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem. 1994 Oct 14;269(41):25710–25718. [PubMed] [Google Scholar]
  38. Wells R. G., Hediger M. A. Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5596–5600. doi: 10.1073/pnas.89.12.5596. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES