Abstract
Atomic co-ordinates and structure factors for the T67R/S92D metMbCN mutant have been deposited with the Protein Data Bank, under accession codes 1h1x and r1h1xsf, respectively. Protein engineering and cofactor replacement have been employed as tools to introduce/modulate peroxidase activity in sperm whale Mb (myoglobin). Based on the rationale that haem peroxidase active sites are characterized by specific charged residues, the Mb haem crevice has been modified to host a haem-distalpropionate Arg residue and a proximal Asp, yielding the T67R/S92D Mb mutant. To code extra conformational mobility around the haem, and to increase the peroxidase catalytic efficiency, the T67R/S92D Mb mutant has been subsequently reconstituted with protohaem-L-histidine methyl ester, yielding a stable derivative, T67R/S92D Mb-H. The crystal structure of T67R/S92D cyano-metMb (1.4 A resolution; R factor, 0.12) highlights a regular haem-cyanide binding mode, and the role for the mutated residues in affecting the haem propionates as well as the neighbouring water structure. The conformational disorder of the haem propionate-7 is evidenced by the NMR spectrum of the mutant. Ligand-binding studies show that the iron(III) centres of T67R/S92D Mb, and especially of T67R/S92D Mb-H, exhibit higher affinity for azide and imidazole than wild-type Mb. In addition, both protein derivatives react faster than wild-type Mb with hydrogen peroxide, showing higher peroxidase-like activity towards phenolic substrates. The catalytic efficiency of T67R/S92D Mb-H in these reactions is the highest so far reported for Mb derivatives. A model for the protein-substrate interaction is deduced based on the crystal structure and on the NMR spectra of protein-phenol complexes.
Full Text
The Full Text of this article is available as a PDF (178.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertini I., Luchinat C., Parigi G., Walker F. A. Heme methyl 1H chemical shifts as structural parameters in some low-spin ferriheme proteins. J Biol Inorg Chem. 1999 Aug;4(4):515–519. doi: 10.1007/s007750050337. [DOI] [PubMed] [Google Scholar]
- Bolognesi M., Rosano C., Losso R., Borassi A., Rizzi M., Wittenberg J. B., Boffi A., Ascenzi P. Cyanide binding to Lucina pectinata hemoglobin I and to sperm whale myoglobin: an x-ray crystallographic study. Biophys J. 1999 Aug;77(2):1093–1099. doi: 10.1016/S0006-3495(99)76959-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emerson S. D., La Mar G. N. NMR determination of the orientation of the magnetic susceptibility tensor in cyanometmyoglobin: a new probe of steric tilt of bound ligand. Biochemistry. 1990 Feb 13;29(6):1556–1566. doi: 10.1021/bi00458a029. [DOI] [PubMed] [Google Scholar]
- Gajhede M., Schuller D. J., Henriksen A., Smith A. T., Poulos T. L. Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Biol. 1997 Dec;4(12):1032–1038. doi: 10.1038/nsb1297-1032. [DOI] [PubMed] [Google Scholar]
- Hayashi Takashi, Hisaeda Yoshio. New functionalization of myoglobin by chemical modification of heme-propionates. Acc Chem Res. 2002 Jan;35(1):35–43. doi: 10.1021/ar000087t. [DOI] [PubMed] [Google Scholar]
- Lloyd E., Burk D. L., Ferrer J. C., Maurus R., Doran J., Carey P. R., Brayer G. D., Mauk A. G. Electrostatic modification of the active site of myoglobin: characterization of the proximal Ser92Asp variant. Biochemistry. 1996 Sep 10;35(36):11901–11912. doi: 10.1021/bi9608976. [DOI] [PubMed] [Google Scholar]
- Matsui T., Ozaki S. i., Liong E., Phillips G. N., Jr, Watanabe Y. Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide. J Biol Chem. 1999 Jan 29;274(5):2838–2844. doi: 10.1074/jbc.274.5.2838. [DOI] [PubMed] [Google Scholar]
- Monzani E., Alzuet G., Casella L., Redaelli C., Bassani C., Sanangelantoni A. M., Gullotti M., de Gioia L., Santagostini L., Chillemi F. Properties and reactivity of myoglobin reconstituted with chemically modified protohemin complexes. Biochemistry. 2000 Aug 8;39(31):9571–9582. doi: 10.1021/bi000784t. [DOI] [PubMed] [Google Scholar]
- Monzani E., Gatti A. L., Profumo A., Casella L., Gullotti M. Oxidation of phenolic compounds by lactoperoxidase. Evidence for the presence of a low-potential compound II during catalytic turnover. Biochemistry. 1997 Feb 18;36(7):1918–1926. doi: 10.1021/bi961868y. [DOI] [PubMed] [Google Scholar]
- Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
- Nagano S., Tanaka M., Ishimori K., Watanabe Y., Morishima I. Catalytic roles of the distal site asparagine-histidine couple in peroxidases. Biochemistry. 1996 Nov 12;35(45):14251–14258. doi: 10.1021/bi961740g. [DOI] [PubMed] [Google Scholar]
- Ozaki Si, Roach M. P., Matsui T., Watanabe Y. Investigations of the roles of the distal heme environment and the proximal heme iron ligand in peroxide activation by heme enzymes via molecular engineering of myoglobin. Acc Chem Res. 2001 Oct;34(10):818–825. doi: 10.1021/ar9502590. [DOI] [PubMed] [Google Scholar]
- Poulos T. L., Kraut J. The stereochemistry of peroxidase catalysis. J Biol Chem. 1980 Sep 10;255(17):8199–8205. [PubMed] [Google Scholar]
- Redaelli Cristina, Monzani Enrico, Santagostini Laura, Casella Luigi, Sanangelantoni Anna Maria, Pierattelli Roberta, Banci Lucia. Characterization and peroxidase activity of a myoglobin mutant containing a distal arginine. Chembiochem. 2002 Mar 1;3(2-3):226–233. doi: 10.1002/1439-7633(20020301)3:2/3<226::AID-CBIC226>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
- Wan L., Twitchett M. B., Eltis L. D., Mauk A. G., Smith M. In vitro evolution of horse heart myoglobin to increase peroxidase activity. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12825–12831. doi: 10.1073/pnas.95.22.12825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu Y., Chien E. Y., Sligar S. G., La Mar G. N. Influence of proximal side mutations on the molecular and electronic structure of cyanomet myoglobin: an 1H NMR study. Biochemistry. 1998 May 12;37(19):6979–6990. doi: 10.1021/bi9728295. [DOI] [PubMed] [Google Scholar]