Abstract
PRL (prolactin) has been implicated in the proliferation and differentiation of numerous tissues, including the prostate gland. However, the PRL-R (PRL receptor) signal transduction pathway, leading to the stimulation of cell proliferation, remains unclear and has yet to be mapped. The present study was undertaken to develop a clear understanding of the mechanisms involved in this pathway and, in particular, to determine the role of K(+) channels. We used androgen-sensitive prostate cancer (LNCaP) cells whose proliferation is known to be stimulated by PRL. Reverse transcriptase PCR analysis showed that LNCaP cells express a long form of PRL-R, but do not produce its intermediate isoform. Patch-clamp techniques showed that the application of 5 nM PRL increased both the macroscopic K(+) current amplitude and the single K(+)-channel open probability. This single-channel activity increase was reduced by the tyrosine kinase inhibitors genistein, herbimycin A and lavandustine A, thereby indicating that tyrosine kinase phosphorylation is required in PRL-induced K(+) channel stimulation. PRL enhances p59( fyn ) phosphorylation by a factor of 2 after a 10 min application in culture. In addition, where an antip59( fyn ) antibody is present in the patch pipette, PRL no longer increases K(+) current amplitude. Furthermore, the PRL-stimulated proliferation is inhibited by the K(+) channel inhibitors alpha-dendrotoxin and tetraethylammonium. Thus, as K(+) channels are known to be involved in LNCaP cell proliferation, we suggest that K(+) channel modulation by PRL, via p59( fyn ) pathway, is the primary ionic event in PRL signal transduction, triggering cell proliferation.
Full Text
The Full Text of this article is available as a PDF (203.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahonen T. J., Härkönen P. L., Laine J., Rui H., Martikainen P. M., Nevalainen M. T. Prolactin is a survival factor for androgen-deprived rat dorsal and lateral prostate epithelium in organ culture. Endocrinology. 1999 Nov;140(11):5412–5421. doi: 10.1210/endo.140.11.7090. [DOI] [PubMed] [Google Scholar]
- Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
- Aniksztejn L., Catarsi S., Drapeau P. Channel modulation by tyrosine phosphorylation in an identified leech neuron. J Physiol. 1997 Jan 1;498(Pt 1):135–142. doi: 10.1113/jphysiol.1997.sp021846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bole-Feysot C., Goffin V., Edery M., Binart N., Kelly P. A. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998 Jun;19(3):225–268. doi: 10.1210/edrv.19.3.0334. [DOI] [PubMed] [Google Scholar]
- Boutin J. M., Edery M., Shirota M., Jolicoeur C., Lesueur L., Ali S., Gould D., Djiane J., Kelly P. A. Identification of a cDNA encoding a long form of prolactin receptor in human hepatoma and breast cancer cells. Mol Endocrinol. 1989 Sep;3(9):1455–1461. doi: 10.1210/mend-3-9-1455. [DOI] [PubMed] [Google Scholar]
- Carlotti A., Dallot A., Laroche L., Rybojad M., Feyeux C., Verola O., Gisselbrecht C., Morel P., Puissant A. Cutaneous lymphomas of the T cell type presenting primary tumors. Curr Probl Dermatol. 1990;19:157–160. doi: 10.1159/000418086. [DOI] [PubMed] [Google Scholar]
- Castagnetta L. A., Miceli M. D., Sorci C. M., Pfeffer U., Farruggio R., Oliveri G., Calabrò M., Carruba G. Growth of LNCaP human prostate cancer cells is stimulated by estradiol via its own receptor. Endocrinology. 1995 May;136(5):2309–2319. doi: 10.1210/endo.136.5.7536668. [DOI] [PubMed] [Google Scholar]
- Clevenger C. V., Medaglia M. V. The protein tyrosine kinase P59fyn is associated with prolactin (PRL) receptor and is activated by PRL stimulation of T-lymphocytes. Mol Endocrinol. 1994 Jun;8(6):674–681. doi: 10.1210/mend.8.6.7935483. [DOI] [PubMed] [Google Scholar]
- Costello L. C., Franklin R. B. Effect of prolactin on the prostate. Prostate. 1994;24(3):162–166. doi: 10.1002/pros.2990240311. [DOI] [PubMed] [Google Scholar]
- DaSilva L., Howard O. M., Rui H., Kirken R. A., Farrar W. L. Growth signaling and JAK2 association mediated by membrane-proximal cytoplasmic regions of prolactin receptors. J Biol Chem. 1994 Jul 15;269(28):18267–18270. [PubMed] [Google Scholar]
- Goffin V., Kelly P. A. The prolactin/growth hormone receptor family: structure/function relationships. J Mammary Gland Biol Neoplasia. 1997 Jan;2(1):7–17. doi: 10.1023/a:1026313211704. [DOI] [PubMed] [Google Scholar]
- Goffin Vincent, Kelly Paul A. Growth-promoting actions of prolactin, the hormone of lactation. J Pediatr Endocrinol Metab. 2002 Jun;15(6):787–788. doi: 10.1515/jpem.2002.15.6.787. [DOI] [PubMed] [Google Scholar]
- Gourdou I., Gabou L., Paly J., Kermabon A. Y., Belair L., Djiane J. Development of a constitutively active mutant form of the prolactin receptor, a member of the cytokine receptor family. Mol Endocrinol. 1996 Jan;10(1):45–56. doi: 10.1210/mend.10.1.8838144. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Holmes T. C., Fadool D. A., Ren R., Levitan I. B. Association of Src tyrosine kinase with a human potassium channel mediated by SH3 domain. Science. 1996 Dec 20;274(5295):2089–2091. doi: 10.1126/science.274.5295.2089. [DOI] [PubMed] [Google Scholar]
- Horoszewicz J. S., Leong S. S., Kawinski E., Karr J. P., Rosenthal H., Chu T. M., Mirand E. A., Murphy G. P. LNCaP model of human prostatic carcinoma. Cancer Res. 1983 Apr;43(4):1809–1818. [PubMed] [Google Scholar]
- Ivanov D. V., Tyazhelova T. V., Lemonnier L., Kononenko N., Pestova A. A., Nikitin E. A., Prevarskaya N., Skryma R., Panchin Y. V., Yankovsky N. K. A new human gene KCNRG encoding potassium channel regulating protein is a cancer suppressor gene candidate located in 13q14.3. FEBS Lett. 2003 Mar 27;539(1-3):156–160. doi: 10.1016/s0014-5793(03)00211-4. [DOI] [PubMed] [Google Scholar]
- Kadar T., Ben-David M., Pontes J. E., Fekete M., Schally A. V. Prolactin and luteinizing hormone-releasing hormone receptors in human benign prostatic hyperplasia and prostate cancer. Prostate. 1988;12(4):299–307. doi: 10.1002/pros.2990120403. [DOI] [PubMed] [Google Scholar]
- Kline J. B., Roehrs H., Clevenger C. V. Functional characterization of the intermediate isoform of the human prolactin receptor. J Biol Chem. 1999 Dec 10;274(50):35461–35468. doi: 10.1074/jbc.274.50.35461. [DOI] [PubMed] [Google Scholar]
- Lebrun J. J., Ali S., Sofer L., Ullrich A., Kelly P. A. Prolactin-induced proliferation of Nb2 cells involves tyrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase JAK2. J Biol Chem. 1994 May 13;269(19):14021–14026. [PubMed] [Google Scholar]
- Leff M. A., Buckley D. J., Krumenacker J. S., Reed J. C., Miyashita T., Buckley A. R. Rapid modulation of the apoptosis regulatory genes, bcl-2 and bax by prolactin in rat Nb2 lymphoma cells. Endocrinology. 1996 Dec;137(12):5456–5462. doi: 10.1210/endo.137.12.8940371. [DOI] [PubMed] [Google Scholar]
- Limonta P., Dondi D., Marelli M. M., Moretti R. M., Negri-Cesi P., Motta M. Growth of the androgen-dependent tumor of the prostate: role of androgens and of locally expressed growth modulatory factors. J Steroid Biochem Mol Biol. 1995 Jun;53(1-6):401–405. doi: 10.1016/0960-0760(95)00086-f. [DOI] [PubMed] [Google Scholar]
- Molokanova E., Savchenko A., Kramer R. H. Noncatalytic inhibition of cyclic nucleotide-gated channels by tyrosine kinase induced by genistein. J Gen Physiol. 1999 Jan;113(1):45–56. doi: 10.1085/jgp.113.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molokanova E., Trivedi B., Savchenko A., Kramer R. H. Modulation of rod photoreceptor cyclic nucleotide-gated channels by tyrosine phosphorylation. J Neurosci. 1997 Dec 1;17(23):9068–9076. doi: 10.1523/JNEUROSCI.17-23-09068.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nankin H. R., Calkins J. H. Decreased bioavailable testosterone in aging normal and impotent men. J Clin Endocrinol Metab. 1986 Dec;63(6):1418–1420. doi: 10.1210/jcem-63-6-1418. [DOI] [PubMed] [Google Scholar]
- Nevalainen M. T., Valve E. M., Ahonen T., Yagi A., Paranko J., Härkönen P. L. Androgen-dependent expression of prolactin in rat prostate epithelium in vivo and in organ culture. FASEB J. 1997 Dec;11(14):1297–1307. doi: 10.1096/fasebj.11.14.9409549. [DOI] [PubMed] [Google Scholar]
- Nevalainen M. T., Valve E. M., Ingleton P. M., Nurmi M., Martikainen P. M., Harkonen P. L. Prolactin and prolactin receptors are expressed and functioning in human prostate. J Clin Invest. 1997 Feb 15;99(4):618–627. doi: 10.1172/JCI119204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilius B., Wohlrab W. Potassium channels and regulation of proliferation of human melanoma cells. J Physiol. 1992 Jan;445:537–548. doi: 10.1113/jphysiol.1992.sp018938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Dell T. J., Kandel E. R., Grant S. G. Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature. 1991 Oct 10;353(6344):558–560. doi: 10.1038/353558a0. [DOI] [PubMed] [Google Scholar]
- Ouadid-Ahidouch H., Chaussade F., Roudbaraki M., Slomianny C., Dewailly E., Delcourt P., Prevarskaya N. KV1.1 K(+) channels identification in human breast carcinoma cells: involvement in cell proliferation. Biochem Biophys Res Commun. 2000 Nov 19;278(2):272–277. doi: 10.1006/bbrc.2000.3790. [DOI] [PubMed] [Google Scholar]
- Ouadid-Ahidouch H., Le Bourhis X., Roudbaraki M., Toillon R. A., Delcourt P., Prevarskaya N. Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: possible involvement of a h-ether.a-gogo K+ channel. Receptors Channels. 2001;7(5):345–356. [PubMed] [Google Scholar]
- Pardo L. A., Brüggemann A., Camacho J., Stühmer W. Cell cycle-related changes in the conducting properties of r-eag K+ channels. J Cell Biol. 1998 Nov 2;143(3):767–775. doi: 10.1083/jcb.143.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pardo L. A., del Camino D., Sánchez A., Alves F., Brüggemann A., Beckh S., Stühmer W. Oncogenic potential of EAG K(+) channels. EMBO J. 1999 Oct 15;18(20):5540–5547. doi: 10.1093/emboj/18.20.5540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parekh A. B., Penner R. Store depletion and calcium influx. Physiol Rev. 1997 Oct;77(4):901–930. doi: 10.1152/physrev.1997.77.4.901. [DOI] [PubMed] [Google Scholar]
- Peppelenbosch M. P., Tertoolen L. G., de Laat S. W. Epidermal growth factor-activated calcium and potassium channels. J Biol Chem. 1991 Oct 25;266(30):19938–19944. [PubMed] [Google Scholar]
- Premack B. A., McDonald T. V., Gardner P. Activation of Ca2+ current in Jurkat T cells following the depletion of Ca2+ stores by microsomal Ca(2+)-ATPase inhibitors. J Immunol. 1994 Jun 1;152(11):5226–5240. [PubMed] [Google Scholar]
- Prevarskaya N. B., Skryma R. N., Vacher P., Daniel N., Djiane J., Dufy B. Role of tyrosine phosphorylation in potassium channel activation. Functional association with prolactin receptor and JAK2 tyrosine kinase. J Biol Chem. 1995 Oct 13;270(41):24292–24299. doi: 10.1074/jbc.270.41.24292. [DOI] [PubMed] [Google Scholar]
- Prevarskaya N., Skryma R., Vacher P., Daniel N., Bignon C., Djiane J., Dufy B. Early effects of PRL on ion conductances in CHO cells expressing PRL receptor. Am J Physiol. 1994 Aug;267(2 Pt 1):C554–C562. doi: 10.1152/ajpcell.1994.267.2.C554. [DOI] [PubMed] [Google Scholar]
- Ratovondrahona D., Fahmi M., Fournier B., Odessa M. F., Skryma R., Prevarskaya N., Djiane J., Dufy B. Prolactin induces an inward current through voltage-independent Ca2+ channels in Chinese hamster ovary cells stably expressing prolactin receptor. J Mol Endocrinol. 1998 Aug;21(1):85–95. doi: 10.1677/jme.0.0210085. [DOI] [PubMed] [Google Scholar]
- Reinhart P. H., Levitan I. B. Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel. J Neurosci. 1995 Jun;15(6):4572–4579. doi: 10.1523/JNEUROSCI.15-06-04572.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouzaire-Dubois B., Dubois J. M. K+ channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. J Physiol. 1998 Jul 1;510(Pt 1):93–102. doi: 10.1111/j.1469-7793.1998.093bz.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruffion Alain, Al-Sakkaf Kaltoom A., Brown Barry L., Eaton Colby L., Hamdy Freddie C., Dobson Pauline R. M. The survival effect of prolactin on PC3 prostate cancer cells. Eur Urol. 2003 Mar;43(3):301–308. doi: 10.1016/s0302-2838(03)00038-1. [DOI] [PubMed] [Google Scholar]
- Rui H., Djeu J. Y., Evans G. A., Kelly P. A., Farrar W. L. Prolactin receptor triggering. Evidence for rapid tyrosine kinase activation. J Biol Chem. 1992 Nov 25;267(33):24076–24081. [PubMed] [Google Scholar]
- Rui H., Kirken R. A., Farrar W. L. Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem. 1994 Feb 18;269(7):5364–5368. [PubMed] [Google Scholar]
- Rui H., Lebrun J. J., Kirken R. A., Kelly P. A., Farrar W. L. JAK2 activation and cell proliferation induced by antibody-mediated prolactin receptor dimerization. Endocrinology. 1994 Oct;135(4):1299–1306. doi: 10.1210/endo.135.4.7925093. [DOI] [PubMed] [Google Scholar]
- Rybalchenko V., Prevarskaya N., Van Coppenolle F., Legrand G., Lemonnier L., Le Bourhis X., Skryma R. Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing K+ channel gating. Mol Pharmacol. 2001 Jun;59(6):1376–1387. doi: 10.1124/mol.59.6.1376. [DOI] [PubMed] [Google Scholar]
- Seth A., Gonzalez F. A., Gupta S., Raden D. L., Davis R. J. Signal transduction within the nucleus by mitogen-activated protein kinase. J Biol Chem. 1992 Dec 5;267(34):24796–24804. [PubMed] [Google Scholar]
- Shieh C. C., Coghlan M., Sullivan J. P., Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev. 2000 Dec;52(4):557–594. [PubMed] [Google Scholar]
- Skryma R. N., Prevarskaya N. B., Dufy-Barbe L., Odessa M. F., Audin J., Dufy B. Potassium conductance in the androgen-sensitive prostate cancer cell line, LNCaP: involvement in cell proliferation. Prostate. 1997 Oct 1;33(2):112–122. doi: 10.1002/(sici)1097-0045(19971001)33:2<112::aid-pros5>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
- Skryma R., Van Coppenolle F., Dufy-Barbe L., Dufy B., Prevarskaya N. Characterization of Ca(2+)-inhibited potassium channels in the LNCaP human prostate cancer cell line. Receptors Channels. 1999;6(4):241–253. [PubMed] [Google Scholar]
- Sobko A., Peretz A., Attali B. Constitutive activation of delayed-rectifier potassium channels by a src family tyrosine kinase in Schwann cells. EMBO J. 1998 Aug 17;17(16):4723–4734. doi: 10.1093/emboj/17.16.4723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soliven Betty, Ma Lan, Bae Hyun, Attali Bernard, Sobko Alexander, Iwase Tamaki. PDGF upregulates delayed rectifier via Src family kinases and sphingosine kinase in oligodendroglial progenitors. Am J Physiol Cell Physiol. 2003 Jan;284(1):C85–C93. doi: 10.1152/ajpcell.00145.2002. [DOI] [PubMed] [Google Scholar]
- Sorin B., Goupille O., Vacher A. M., Paly J., Djiane J., Vacher P. Distinct cytoplasmic regions of the prolactin receptor are required for prolactin-induced calcium entry. J Biol Chem. 1998 Oct 23;273(43):28461–28469. doi: 10.1074/jbc.273.43.28461. [DOI] [PubMed] [Google Scholar]
- Syms A. J., Harper M. E., Griffiths K. The effect of prolactin on human BPH epithelial cell proliferation. Prostate. 1985;6(2):145–153. doi: 10.1002/pros.2990060204. [DOI] [PubMed] [Google Scholar]
- Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y. C., Tsubokawa M. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. 1985 Feb 28-Mar 6Nature. 313(6005):756–761. doi: 10.1038/313756a0. [DOI] [PubMed] [Google Scholar]
- Van Coppenolle F., Le Bourhis X., Carpentier F., Delaby G., Cousse H., Raynaud J. P., Dupouy J. P., Prevarskaya N. Pharmacological effects of the lipidosterolic extract of Serenoa repens (Permixon) on rat prostate hyperplasia induced by hyperprolactinemia: comparison with finasteride. Prostate. 2000 Apr 1;43(1):49–58. doi: 10.1002/(sici)1097-0045(20000401)43:1<49::aid-pros7>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
- Van Coppenolle F., Slomianny C., Carpentier F., Le Bourhis X., Ahidouch A., Croix D., Legrand G., Dewailly E., Fournier S., Cousse H. Effects of hyperprolactinemia on rat prostate growth: evidence of androgeno-dependence. Am J Physiol Endocrinol Metab. 2001 Jan;280(1):E120–E129. doi: 10.1152/ajpendo.2001.280.1.E120. [DOI] [PubMed] [Google Scholar]
- Vanden Abeele Fabien, Roudbaraki Morad, Shuba Yaroslav, Skryma Roman, Prevarskaya Natalia. Store-operated Ca2+ current in prostate cancer epithelial cells. Role of endogenous Ca2+ transporter type 1. J Biol Chem. 2003 Feb 12;278(17):15381–15389. doi: 10.1074/jbc.M212106200. [DOI] [PubMed] [Google Scholar]
- Vanden Abeele Fabien, Skryma Roman, Shuba Yaroslav, Van Coppenolle Fabien, Slomianny Christian, Roudbaraki Morad, Mauroy Brigitte, Wuytack Frank, Prevarskaya Natalia. Bcl-2-dependent modulation of Ca(2+) homeostasis and store-operated channels in prostate cancer cells. Cancer Cell. 2002 Mar;1(2):169–179. doi: 10.1016/s1535-6108(02)00034-x. [DOI] [PubMed] [Google Scholar]
- Vaur S., Bresson-Bepoldin L., Dufy B., Tuffet S., Dufy-Barbe L. Potassium channel inhibition reduces cell proliferation in the GH3 pituitary cell line. J Cell Physiol. 1998 Dec;177(3):402–410. doi: 10.1002/(SICI)1097-4652(199812)177:3<402::AID-JCP4>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
- Wang Y. F., Jia H., Walker A. M., Cukierman S. K-current mediation of prolactin-induced proliferation of malignant (Nb2) lymphocytes. J Cell Physiol. 1992 Jul;152(1):185–189. doi: 10.1002/jcp.1041520123. [DOI] [PubMed] [Google Scholar]
- Waters M. J., Daniel N., Bignon C., Djiane J. The rabbit mammary gland prolactin receptor is tyrosine-phosphorylated in response to prolactin in vivo and in vitro. J Biol Chem. 1995 Mar 10;270(10):5136–5143. doi: 10.1074/jbc.270.10.5136. [DOI] [PubMed] [Google Scholar]
- Wickenden Alan. K(+) channels as therapeutic drug targets. Pharmacol Ther. 2002 Apr-May;94(1-2):157–182. doi: 10.1016/s0163-7258(02)00201-2. [DOI] [PubMed] [Google Scholar]
- Yu X. M., Askalan R., Keil G. J., 2nd, Salter M. W. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science. 1997 Jan 31;275(5300):674–678. doi: 10.1126/science.275.5300.674. [DOI] [PubMed] [Google Scholar]