Abstract
The sequences for Omp38 from Burkholderia pseudomallei and Burkholderia thailandensis have been deposited in the DDBJ, EMBL, GenBank(R) and GSDB Nucleotide Sequence Databases under the accession numbers AY312416 and AY312417 respectively. The intracellular pathogen Burkholderia pseudomallei is the causative agent of tropical melioidosis, and Burkholderia thailandensis is a closely-related Gram-negative bacterium that does not cause serious disease. Like other bacteria, the major outer membrane (OM) porins of Burkholderia strains, Bps Omp38 and Bth Omp38 may have roles in antibiotic resistance and immunity. We purified both proteins and found them to be immunologically related, SDS-resistant, heat-sensitive trimers with M (r) of approx. 110000. In functional liposome-swelling assays, both proteins showed similar permeabilities for small sugar molecules, compatible with a pore diameter of between 1.2 and 1.6 nm. Secondary structure analysis by FTIR (Fourier-transform infrared) spectroscopy revealed almost identical spectra with predominantly beta-sheet structures, typical of bacterial porins. MALDI-TOF (matrix-assisted laser-desorption ionization-time of flight) MS and ESI/MS (electrospray ionization MS) analysis of each protein showed extensive sequence similarities to the OpcP1 porin from Burkholderia cepacia (later found to be 76.5% identical). Based on information from the incomplete B. pseudomallei genome-sequencing project, the genes encoding Omp38 were identified and amplified by PCR from B. pseudomallei and B. thailandensis genomic DNA. The nucleotide sequences are 99.7% identical, and the predicted processed proteins are 100% identical. Topology prediction and molecular modelling suggest that this newly-isolated and cloned porin is a 16-stranded beta-barrel and the external loops of the protein could be important determinants of the immune response to infection.
Full Text
The Full Text of this article is available as a PDF (435.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrecht H., Goormaghtigh E., Ruysschaert J. M., Homble F. Structure and orientation of two voltage-dependent anion-selective channel isoforms. An attenuated total reflection fourier-transform infrared spectroscopy study. J Biol Chem. 2000 Dec 29;275(52):40992–40999. doi: 10.1074/jbc.M006437200. [DOI] [PubMed] [Google Scholar]
- Albertí S., Rodríquez-Quiñones F., Schirmer T., Rummel G., Tomás J. M., Rosenbusch J. P., Benedí V. J. A porin from Klebsiella pneumoniae: sequence homology, three-dimensional model, and complement binding. Infect Immun. 1995 Mar;63(3):903–910. doi: 10.1128/iai.63.3.903-910.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amero S. A., James T. C., Elgin S. C. Production of antibodies using proteins in gel bands. Methods Mol Biol. 1994;32:401–406. doi: 10.1385/0-89603-268-X:401. [DOI] [PubMed] [Google Scholar]
- Arockiasamy A., Krishnaswamy S. Purification of integral outer-membrane protein OmpC, a surface antigen from Salmonella typhi for structure-function studies: a method applicable to enterobacterial major outer-membrane protein. Anal Biochem. 2000 Jul 15;283(1):64–70. doi: 10.1006/abio.2000.4634. [DOI] [PubMed] [Google Scholar]
- Badsha H., Edwards C. J., Chng H. H. Melioidosis in systemic lupus erythematosus: the importance of early diagnosis and treatment in patients from endemic areas. Lupus. 2001;10(11):821–823. doi: 10.1177/096120330101001111. [DOI] [PubMed] [Google Scholar]
- Bianco N., Neshat S., Poole K. Conservation of the multidrug resistance efflux gene oprM in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1997 Apr;41(4):853–856. doi: 10.1128/aac.41.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bredin Jérôme, Saint Nathalie, Malléa Monique, Dé Emmanuelle, Molle Gérard, Pagès Jean-Marie, Simonet Valérie. Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochem J. 2002 May 1;363(Pt 3):521–528. doi: 10.1042/0264-6021:3630521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brett P. J., DeShazer D., Woods D. E. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol. 1998 Jan;48(Pt 1):317–320. doi: 10.1099/00207713-48-1-317. [DOI] [PubMed] [Google Scholar]
- Brett P. J., Deshazer D., Woods D. E. Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains. Epidemiol Infect. 1997 Apr;118(2):137–148. doi: 10.1017/s095026889600739x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaiyaroj S. C., Kotrnon K., Koonpaew S., Anantagool N., White N. J., Sirisinha S. Differences in genomic macrorestriction patterns of arabinose-positive (Burkholderia thailandensis) and arabinose-negative Burkholderia pseudomallei. Microbiol Immunol. 1999;43(7):625–630. doi: 10.1111/j.1348-0421.1999.tb02449.x. [DOI] [PubMed] [Google Scholar]
- Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
- Diederichs K., Freigang J., Umhau S., Zeth K., Breed J. Prediction by a neural network of outer membrane beta-strand protein topology. Protein Sci. 1998 Nov;7(11):2413–2420. doi: 10.1002/pro.5560071119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisele J. L., Rosenbusch J. P. In vitro folding and oligomerization of a membrane protein. Transition of bacterial porin from random coil to native conformation. J Biol Chem. 1990 Jun 25;265(18):10217–10220. [PubMed] [Google Scholar]
- Fajardo D. A., Cheung J., Ito C., Sugawara E., Nikaido H., Misra R. Biochemistry and regulation of a novel Escherichia coli K-12 porin protein, OmpG, which produces unusually large channels. J Bacteriol. 1998 Sep;180(17):4452–4459. doi: 10.1128/jb.180.17.4452-4459.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forst D., Welte W., Wacker T., Diederichs K. Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat Struct Biol. 1998 Jan;5(1):37–46. doi: 10.1038/nsb0198-37. [DOI] [PubMed] [Google Scholar]
- Goodman Barbara E. Transport of small molecules across cell membranes: water channels and urea transporters. Adv Physiol Educ. 2002 Dec;26(1-4):146–157. doi: 10.1152/advan.00027.2002. [DOI] [PubMed] [Google Scholar]
- Gotoh N., Nagino K., Wada K., Tsujimoto H., Nishino T. Burkholderia (formerly Pseudomonas) cepacia porin is an oligomer composed of two component proteins. Microbiology. 1994 Dec;140(Pt 12):3285–3291. doi: 10.1099/13500872-140-12-3285. [DOI] [PubMed] [Google Scholar]
- Gotoh N., White N. J., Chaowagul W., Woods D. E. Isolation and characterization of the outer-membrane proteins of Burkholderia (Pseudomonas) pseudomallei. Microbiology. 1994 Apr;140(Pt 4):797–805. doi: 10.1099/00221287-140-4-797. [DOI] [PubMed] [Google Scholar]
- Ho Yen-Peng, Hsu Po-Hsi. Investigating the effects of protein patterns on microorganism identification by high-performance liquid chromatography-mass spectrometry and protein database searches. J Chromatogr A. 2002 Nov 8;976(1-2):103–111. doi: 10.1016/s0021-9673(02)00939-1. [DOI] [PubMed] [Google Scholar]
- Jeanteur D., Schirmer T., Fourel D., Simonet V., Rummel G., Widmer C., Rosenbusch J. P., Pattus F., Pagès J. M. Structural and functional alterations of a colicin-resistant mutant of OmpF porin from Escherichia coli. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10675–10679. doi: 10.1073/pnas.91.22.10675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karshikoff A., Spassov V., Cowan S. W., Ladenstein R., Schirmer T. Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol. 1994 Jul 22;240(4):372–384. doi: 10.1006/jmbi.1994.1451. [DOI] [PubMed] [Google Scholar]
- Koebnik R., Locher K. P., Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000 Jul;37(2):239–253. doi: 10.1046/j.1365-2958.2000.01983.x. [DOI] [PubMed] [Google Scholar]
- Labesse G., Garnotel E., Bonnel S., Dumas C., Pages J. M., Bolla J. M. MOMP, a divergent porin from Campylobacter: cloning and primary structural characterization. Biochem Biophys Res Commun. 2001 Jan 12;280(1):380–387. doi: 10.1006/bbrc.2000.4129. [DOI] [PubMed] [Google Scholar]
- Moore R. A., DeShazer D., Reckseidler S., Weissman A., Woods D. E. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother. 1999 Mar;43(3):465–470. doi: 10.1128/aac.43.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H., Rosenberg E. Y. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol. 1983 Jan;153(1):241–252. doi: 10.1128/jb.153.1.241-252.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nitzan Y., Orlovsky K., Pechatnikov I. Characterization of porins isolated from the outer membrane of Serratia liquefaciens. Curr Microbiol. 1999 Feb;38(2):71–79. doi: 10.1007/s002849900406. [DOI] [PubMed] [Google Scholar]
- Phale P. S., Schirmer T., Prilipov A., Lou K. L., Hardmeyer A., Rosenbusch J. P. Voltage gating of Escherichia coli porin channels: role of the constriction loop. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6741–6745. doi: 10.1073/pnas.94.13.6741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schirmer T., Keller T. A., Wang Y. F., Rosenbusch J. P. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science. 1995 Jan 27;267(5197):512–514. doi: 10.1126/science.7824948. [DOI] [PubMed] [Google Scholar]
- Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858. doi: 10.1021/ac950914h. [DOI] [PubMed] [Google Scholar]
- Simonet V., Malléa M., Pagès J. M. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother. 2000 Feb;44(2):311–315. doi: 10.1128/aac.44.2.311-315.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson A. J., Opal S. M., Angus B. J., Prins J. M., Palardy J. E., Parejo N. A., Chaowagul W., White N. J. Differential antibiotic-induced endotoxin release in severe melioidosis. J Infect Dis. 2000 Mar;181(3):1014–1019. doi: 10.1086/315306. [DOI] [PubMed] [Google Scholar]
- Tokunaga M., Tokunaga H., Okajima Y., Nakae T. Characterization of porins from the outer membrane of Salmonella typhimurium. 2. Physical properties of the functional oligomeric aggregates. Eur J Biochem. 1979 Apr;95(3):441–448. doi: 10.1111/j.1432-1033.1979.tb12983.x. [DOI] [PubMed] [Google Scholar]
- Tsujimoto H., Gotoh N., Yamagishi J., Oyamada Y., Nishino T. Cloning and expression of the major porin protein gene opcP of Burkholderia (formerly Pseudomonas) cepacia in Escherichia coli. Gene. 1997 Feb 20;186(1):113–118. doi: 10.1016/s0378-1119(96)00692-0. [DOI] [PubMed] [Google Scholar]
- Wolf K., Fischer E., Mead D., Zhong G., Peeling R., Whitmire B., Caldwell H. D. Chlamydia pneumoniae major outer membrane protein is a surface-exposed antigen that elicits antibodies primarily directed against conformation-dependent determinants. Infect Immun. 2001 May;69(5):3082–3091. doi: 10.1128/IAI.69.5.3082-3091.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woo Patrick C. Y., Woo Gibson K. S., Lau Susanna K. P., Wong Samson S. Y., Yuen Kwok yung. Single gene target bacterial identification. groEL gene sequencing for discriminating clinical isolates of Burkholderia pseudomallei and Burkholderia thailandensis. Diagn Microbiol Infect Dis. 2002 Oct;44(2):143–149. doi: 10.1016/s0732-8893(02)00439-x. [DOI] [PubMed] [Google Scholar]
- Wuthiekanun V., Smith M. D., Dance D. A., Walsh A. L., Pitt T. L., White N. J. Biochemical characteristics of clinical and environmental isolates of Burkholderia pseudomallei. J Med Microbiol. 1996 Dec;45(6):408–412. doi: 10.1099/00222615-45-6-408. [DOI] [PubMed] [Google Scholar]
- Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251–1275. doi: 10.1111/j.1348-0421.1992.tb02129.x. [DOI] [PubMed] [Google Scholar]
- Yoshimura F., Zalman L. S., Nikaido H. Purification and properties of Pseudomonas aeruginosa porin. J Biol Chem. 1983 Feb 25;258(4):2308–2314. [PubMed] [Google Scholar]
- Zeth K., Diederichs K., Welte W., Engelhardt H. Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 A resolution. Structure. 2000 Sep 15;8(9):981–992. doi: 10.1016/s0969-2126(00)00189-1. [DOI] [PubMed] [Google Scholar]