Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 1;377(Pt 3):701–708. doi: 10.1042/BJ20031132

Transcriptional regulation of human mucin MUC4 by bile acids in oesophageal cancer cells is promoter-dependent and involves activation of the phosphatidylinositol 3-kinase signalling pathway.

Christophe Mariette 1, Michaël Perrais 1, Emmanuelle Leteurtre 1, Nicolas Jonckheere 1, Brigitte Hémon 1, Pascal Pigny 1, Surinder Batra 1, Jean-Pierre Aubert 1, Jean-Pierre Triboulet 1, Isabelle Van Seuningen 1
PMCID: PMC1223911  PMID: 14583090

Abstract

Abnormal gastro-oesophageal reflux and bile acids have been linked to the presence of Barrett's oesophageal premalignant lesion associated with an increase in mucin-producing goblet cells and MUC4 mucin gene overexpression. However, the molecular mechanisms underlying the regulation of MUC4 by bile acids are unknown. Since total bile is a complex mixture, we undertook to identify which bile acids are responsible for MUC4 up-regulation by using a wide panel of bile acids and their conjugates. MUC4 apomucin expression was studied by immunohistochemistry both in patient biopsies and OE33 oesophageal cancer cell line. MUC4 mRNA levels and promoter regulation were studied by reverse transcriptase-PCR and transient transfection assays respectively. We show that among the bile acids tested, taurocholic, taurodeoxycholic, taurochenodeoxycholic and glycocholic acids and sodium glycocholate are strong activators of MUC4 expression and that this regulation occurs at the transcriptional level. By using specific pharmacological inhibitors of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase A and protein kinase C, we demonstrate that bile acid-mediated up-regulation of MUC4 is promoter-specific and mainly involves activation of phosphatidylinositol 3-kinase. This new mechanism of regulation of MUC4 mucin gene points out an important role for bile acids as key molecules in targeting MUC4 overexpression in early stages of oesophageal carcinogenesis.

Full Text

The Full Text of this article is available as a PDF (395.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arul G. S., Moorghen M., Myerscough N., Alderson D. A., Spicer R. D., Corfield A. P. Mucin gene expression in Barrett's oesophagus: an in situ hybridisation and immunohistochemical study. Gut. 2000 Dec;47(6):753–761. doi: 10.1136/gut.47.6.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barcelo A., Claustre J., Toumi F., Burlet G., Chayvialle J. A., Cuber J. C., Plaisancié P. Effect of bile salts on colonic mucus secretion in isolated vascularly perfused rat colon. Dig Dis Sci. 2001 Jun;46(6):1223–1231. doi: 10.1023/a:1010607127822. [DOI] [PubMed] [Google Scholar]
  3. Beuers U. Effects of bile acids on hepatocellular signaling and secretion. Yale J Biol Med. 1997 Jul-Aug;70(4):341–346. [PMC free article] [PubMed] [Google Scholar]
  4. Brady L. M., Beno D. W., Davis B. H. Bile acid stimulation of early growth response gene and mitogen-activated protein kinase is protein kinase C-dependent. Biochem J. 1996 Jun 15;316(Pt 3):765–769. doi: 10.1042/bj3160765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carraway Kermit L., Ramsauer Victoria P., Haq Bushra, Carothers Carraway Coralie A. Cell signaling through membrane mucins. Bioessays. 2003 Jan;25(1):66–71. doi: 10.1002/bies.10201. [DOI] [PubMed] [Google Scholar]
  6. Chawla A., Repa J. J., Evans R. M., Mangelsdorf D. J. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001 Nov 30;294(5548):1866–1870. doi: 10.1126/science.294.5548.1866. [DOI] [PubMed] [Google Scholar]
  7. Copin M. C., Devisme L., Buisine M. P., Marquette C. H., Wurtz A., Aubert J. P., Gosselin B., Porchet N. From normal respiratory mucosa to epidermoid carcinoma: expression of human mucin genes. Int J Cancer. 2000 Apr 15;86(2):162–168. doi: 10.1002/(sici)1097-0215(20000415)86:2<162::aid-ijc3>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  8. Corfield A. P., Myerscough N., Longman R., Sylvester P., Arul S., Pignatelli M. Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut. 2000 Oct;47(4):589–594. doi: 10.1136/gut.47.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Debruyne P. R., Bruyneel E. A., Li X., Zimber A., Gespach C., Mareel M. M. The role of bile acids in carcinogenesis. Mutat Res. 2001 Sep 1;480-481:359–369. doi: 10.1016/s0027-5107(01)00195-6. [DOI] [PubMed] [Google Scholar]
  10. Dekker Jan, Rossen John W. A., Büller Hans A., Einerhand Alexandra W. C. The MUC family: an obituary. Trends Biochem Sci. 2002 Mar;27(3):126–131. doi: 10.1016/s0968-0004(01)02052-7. [DOI] [PubMed] [Google Scholar]
  11. Dray-Charier N., Paul A., Combettes L., Bouin M., Mergey M., Balladur P., Capeau J., Housset C. Regulation of mucin secretion in human gallbladder epithelial cells: predominant role of calcium and protein kinase C. Gastroenterology. 1997 Mar;112(3):978–990. doi: 10.1053/gast.1997.v112.pm9041261. [DOI] [PubMed] [Google Scholar]
  12. Endo T., Tamaki K., Arimura Y., Itoh F., Hinoda Y., Hareyama M., Irimura T., Fujita M., Imai K. Expression of sulfated carbohydrate chain and core peptides of mucin detected by monoclonal antibodies in Barrett's esophagus and esophageal adenocarcinoma. J Gastroenterol. 1998 Dec;33(6):811–815. doi: 10.1007/s005350050180. [DOI] [PubMed] [Google Scholar]
  13. Falk Gary W. Barrett's esophagus. Gastroenterology. 2002 May;122(6):1569–1591. doi: 10.1053/gast.2002.33427. [DOI] [PubMed] [Google Scholar]
  14. Garewal H. S. Recent developments in Barrett's esophagus. Curr Oncol Rep. 2000 May;2(3):271–276. doi: 10.1007/s11912-000-0078-9. [DOI] [PubMed] [Google Scholar]
  15. Gillen P., Keeling P., Byrne P. J., Healy M., O'Moore R. R., Hennessy T. P. Implication of duodenogastric reflux in the pathogenesis of Barrett's oesophagus. Br J Surg. 1988 Jun;75(6):540–543. doi: 10.1002/bjs.1800750612. [DOI] [PubMed] [Google Scholar]
  16. Goodwin Bryan, Kliewer Steven A. Nuclear receptors. I. Nuclear receptors and bile acid homeostasis. Am J Physiol Gastrointest Liver Physiol. 2002 Jun;282(6):G926–G931. doi: 10.1152/ajpgi.00044.2002. [DOI] [PubMed] [Google Scholar]
  17. Guillem P., Billeret V., Buisine M. P., Flejou J. F., Lecomte-Houcke M., Degand P., Aubert J. P., Triboulet J. P., Porchet N. Mucin gene expression and cell differentiation in human normal, premalignant and malignant esophagus. Int J Cancer. 2000 Dec 15;88(6):856–861. doi: 10.1002/1097-0215(20001215)88:6<856::aid-ijc3>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  18. Jankowski J. A., Harrison R. F., Perry I., Balkwill F., Tselepis C. Barrett's metaplasia. Lancet. 2000 Dec 16;356(9247):2079–2085. doi: 10.1016/S0140-6736(00)03411-5. [DOI] [PubMed] [Google Scholar]
  19. Jankowski J. A., Wright N. A., Meltzer S. J., Triadafilopoulos G., Geboes K., Casson A. G., Kerr D., Young L. S. Molecular evolution of the metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Pathol. 1999 Apr;154(4):965–973. doi: 10.1016/S0002-9440(10)65346-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jankowski J. Gene expression in Barrett's mucosa: acute and chronic adaptive responses in the oesophagus. Gut. 1993 Dec;34(12):1649–1650. doi: 10.1136/gut.34.12.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jenkins G. J. S., Doak S. H., Parry J. M., D'Souza F. R., Griffiths A. P., Baxter J. N. Genetic pathways involved in the progression of Barrett's metaplasia to adenocarcinoma. Br J Surg. 2002 Jul;89(7):824–837. doi: 10.1046/j.1365-2168.2002.02107.x. [DOI] [PubMed] [Google Scholar]
  22. Klinkspoor J. H., Kuver R., Savard C. E., Oda D., Azzouz H., Tytgat G. N., Groen A. K., Lee S. P. Model bile and bile salts accelerate mucin secretion by cultured dog gallbladder epithelial cells. Gastroenterology. 1995 Jul;109(1):264–274. doi: 10.1016/0016-5085(95)90293-7. [DOI] [PubMed] [Google Scholar]
  23. Klinkspoor J. H., Mok K. S., Van Klinken B. J., Tytgat G. N., Lee S. P., Groen A. K. Mucin secretion by the human colon cell line LS174T is regulated by bile salts. Glycobiology. 1999 Jan;9(1):13–19. doi: 10.1093/glycob/9.1.13. [DOI] [PubMed] [Google Scholar]
  24. Klinkspoor J. H., Yoshida T., Lee S. P. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect. Biochem J. 1998 May 15;332(Pt 1):257–262. doi: 10.1042/bj3320257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Labouvie C., Machado J. C., Carneiro F., Sarbia M., Vieth M., Porschen R., Seitz G., Blin N. Differential expression of mucins and trefoil peptides in native epithelium, Barrett's metaplasia and squamous cell carcinoma of the oesophagus. J Cancer Res Clin Oncol. 1999;125(2):71–76. doi: 10.1007/s004320050244. [DOI] [PubMed] [Google Scholar]
  26. Mariette C., Castel B., Toursel H., Fabre S., Balon J. M., Triboulet J-P. Surgical management of and long-term survival after adenocarcinoma of the cardia. Br J Surg. 2002 Sep;89(9):1156–1163. doi: 10.1046/j.1365-2168.2002.02185.x. [DOI] [PubMed] [Google Scholar]
  27. Mariette Christophe, Balon Jean-Michel, Piessen Guillaune, Fabre Sylvain, Van Seuningen Isabelle, Triboulet Jean-Pierre. Pattern of recurrence following complete resection of esophageal carcinoma and factors predictive of recurrent disease. Cancer. 2003 Apr 1;97(7):1616–1623. doi: 10.1002/cncr.11228. [DOI] [PubMed] [Google Scholar]
  28. Miwa K., Sahara H., Segawa M., Kinami S., Sato T., Miyazaki I., Hattori T. Reflux of duodenal or gastro-duodenal contents induces esophageal carcinoma in rats. Int J Cancer. 1996 Jul 17;67(2):269–274. doi: 10.1002/(SICI)1097-0215(19960717)67:2<269::AID-IJC19>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  29. Perrais M., Pigny P., Ducourouble M. P., Petitprez D., Porchet N., Aubert J. P., Van Seuningen I. Characterization of human mucin gene MUC4 promoter: importance of growth factors and proinflammatory cytokines for its regulation in pancreatic cancer cells. J Biol Chem. 2001 Jun 19;276(33):30923–30933. doi: 10.1074/jbc.M104204200. [DOI] [PubMed] [Google Scholar]
  30. Perrais Michaël, Pigny Pascal, Copin Marie-Christine, Aubert Jean-Pierre, Van Seuningen Isabelle. Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF receptor/Ras/Raf/extracellular signal-regulated kinase cascade and Sp1. J Biol Chem. 2002 Jun 19;277(35):32258–32267. doi: 10.1074/jbc.M204862200. [DOI] [PubMed] [Google Scholar]
  31. Qiao D., Stratagouleas E. D., Martinez J. D. Activation and role of mitogen-activated protein kinases in deoxycholic acid-induced apoptosis. Carcinogenesis. 2001 Jan;22(1):35–41. doi: 10.1093/carcin/22.1.35. [DOI] [PubMed] [Google Scholar]
  32. Rockett J. C., Larkin K., Darnton S. J., Morris A. G., Matthews H. R. Five newly established oesophageal carcinoma cell lines: phenotypic and immunological characterization. Br J Cancer. 1997;75(2):258–263. doi: 10.1038/bjc.1997.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rust C., Karnitz L. M., Paya C. V., Moscat J., Simari R. D., Gores G. J. The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem. 2000 Jun 30;275(26):20210–20216. doi: 10.1074/jbc.M909992199. [DOI] [PubMed] [Google Scholar]
  34. Sagara M., Yonezawa S., Nagata K., Tezuka Y., Natsugoe S., Xing P. X., McKenzie I. F., Aikou T., Sato E. Expression of mucin 1 (MUC1) in esophageal squamous-cell carcinoma: its relationship with prognosis. Int J Cancer. 1999 Jun 21;84(3):251–257. doi: 10.1002/(sici)1097-0215(19990621)84:3<251::aid-ijc9>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  35. Sato Takahiro, Miwa Koichi, Sahara Hiroyuki, Segawa Masataka, Hattori Takanori. The sequential model of Barrett's esophagus and adenocarcinoma induced by duodeno-esophageal reflux without exogenous carcinogens. Anticancer Res. 2002 Jan-Feb;22(1A):39–44. [PubMed] [Google Scholar]
  36. Shekels L. L., Lyftogt C. T., Ho S. B. Bile acid-induced alterations of mucin production in differentiated human colon cancer cell lines. Int J Biochem Cell Biol. 1996 Feb;28(2):193–201. doi: 10.1016/1357-2725(95)00125-5. [DOI] [PubMed] [Google Scholar]
  37. Swartz Michael J., Batra Surinder K., Varshney Grish C., Hollingsworth Michael A., Yeo Charles J., Cameron John L., Wilentz Robb E., Hruban Ralph H., Argani Pedram. MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. Am J Clin Pathol. 2002 May;117(5):791–796. doi: 10.1309/7Y7N-M1WM-R0YK-M2VA. [DOI] [PubMed] [Google Scholar]
  38. Takikawa Y., Miyoshi H., Rust C., Roberts P., Siegel R., Mandal P. K., Millikan R. E., Gores G. J. The bile acid-activated phosphatidylinositol 3-kinase pathway inhibits Fas apoptosis upstream of bid in rodent hepatocytes. Gastroenterology. 2001 Jun;120(7):1810–1817. doi: 10.1053/gast.2001.24835. [DOI] [PubMed] [Google Scholar]
  39. Van Seuningen I., Perrais M., Pigny P., Porchet N., Aubert J. P. Sequence of the 5'-flanking region and promoter activity of the human mucin gene MUC5B in different phenotypes of colon cancer cells. Biochem J. 2000 Jun 15;348(Pt 3):675–686. [PMC free article] [PubMed] [Google Scholar]
  40. Warson Christian, Van De Bovenkamp Jeroen H. B., Korteland-Van Male Anita M., Büller Hans A., Einerhand Alexandra W. C., Ectors Nadine L. E. Y., Dekker Jan. Barrett's esophagus is characterized by expression of gastric-type mucins (MUC5AC, MUC6) and TFF peptides (TFF1 and TFF2), but the risk of carcinoma development may be indicated by the intestinal-type mucin, MUC2. Hum Pathol. 2002 Jun;33(6):660–668. doi: 10.1053/hupa.2002.124907. [DOI] [PubMed] [Google Scholar]
  41. Wijnhoven B. P., Tilanus H. W., Dinjens W. N. Molecular biology of Barrett's adenocarcinoma. Ann Surg. 2001 Mar;233(3):322–337. doi: 10.1097/00000658-200103000-00005. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES