Abstract
Hepatocyte expression of iNOS (inducible nitric oxide synthase) and synthesis of nitric oxide convey protective antioxidant functions in models of sepsis, shock and reperfusion. However, the underlying redox-sensitive mechanisms that regulate hepatocyte expression of iNOS and its antioxidant functions are largely unknown. Activity of the transcription factor NF-kappaB (nuclear factor kappaB) is known to be redox-modulated. In this regard, the mouse hepatocyte iNOS promoter has NF-kappaB-binding sites at nt -1044 to -1034 and at nt -114 to -104, which are considered to be critical for iNOS expression in response to pro-inflammatory cytokine stimulation. The relative contribution of these two NF-kappaB-binding sites in the mouse iNOS promoter to hepatocyte iNOS promoter activity in the context of oxidative stress has not been characterized previously. In addition, although the cis - and trans -regulatory factors controlling mouse hepatocyte iNOS expression have been well-characterized, the local changes in chromatin structure that accompany activation of iNOS gene transcription have not been considered. In the present study, we demonstrate that (1) in the absence of exogenous oxidative stress, the NF-kappaB site at nt -114 is inactive and (2) peroxide-mediated oxidative stress induces hyperacetylation and enhanced accessibility of the restriction enzyme to this NF-kappaB region. Our results suggest that chromatin structural changes activate this NF-kappaB site and increase interleukin-1beta-stimulated iNOS expression in the presence of oxidative stress.
Full Text
The Full Text of this article is available as a PDF (275.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashburner B. P., Westerheide S. D., Baldwin A. S., Jr The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol. 2001 Oct;21(20):7065–7077. doi: 10.1128/MCB.21.20.7065-7077.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin A. S., Jr The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–683. doi: 10.1146/annurev.immunol.14.1.649. [DOI] [PubMed] [Google Scholar]
- Bannister A. J., Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996 Dec 19;384(6610):641–643. doi: 10.1038/384641a0. [DOI] [PubMed] [Google Scholar]
- Gerritsen M. E., Williams A. J., Neish A. S., Moore S., Shi Y., Collins T. CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2927–2932. doi: 10.1073/pnas.94.7.2927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilmour Peter S., Rahman Irfan, Donaldson Kenneth, MacNee William. Histone acetylation regulates epithelial IL-8 release mediated by oxidative stress from environmental particles. Am J Physiol Lung Cell Mol Physiol. 2002 Nov 22;284(3):L533–L540. doi: 10.1152/ajplung.00277.2002. [DOI] [PubMed] [Google Scholar]
- Guo Hongtao, Cai Charles Q., Kuo Paul C. Hepatocyte nuclear factor-4alpha mediates redox sensitivity of inducible nitric-oxide synthase gene transcription. J Biol Chem. 2001 Dec 6;277(7):5054–5060. doi: 10.1074/jbc.M109017200. [DOI] [PubMed] [Google Scholar]
- Halliwell B. Antioxidant characterization. Methodology and mechanism. Biochem Pharmacol. 1995 May 17;49(10):1341–1348. doi: 10.1016/0006-2952(95)00088-h. [DOI] [PubMed] [Google Scholar]
- Harris E. D. Regulation of antioxidant enzymes. FASEB J. 1992 Jun;6(9):2675–2683. doi: 10.1096/fasebj.6.9.1612291. [DOI] [PubMed] [Google Scholar]
- Ito K., Jazrawi E., Cosio B., Barnes P. J., Adcock I. M. p65-activated histone acetyltransferase activity is repressed by glucocorticoids: mifepristone fails to recruit HDAC2 to the p65-HAT complex. J Biol Chem. 2001 Jun 6;276(32):30208–30215. doi: 10.1074/jbc.M103604200. [DOI] [PubMed] [Google Scholar]
- Ito K., Lim S., Caramori G., Chung K. F., Barnes P. J., Adcock I. M. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J. 2001 Apr;15(6):1110–1112. [PubMed] [Google Scholar]
- Jaiswal A. K. Antioxidant response element. Biochem Pharmacol. 1994 Aug 3;48(3):439–444. doi: 10.1016/0006-2952(94)90272-0. [DOI] [PubMed] [Google Scholar]
- Kuo P. C., Abe K. Y. Interleukin 1-induced production of nitric oxide inhibits benzenetriol-mediated oxidative injury in rat hepatocytes. Gastroenterology. 1995 Jul;109(1):206–216. doi: 10.1016/0016-5085(95)90286-4. [DOI] [PubMed] [Google Scholar]
- Kuo P. C., Abe K. Y., Schroeder R. A. Oxidative stress increases hepatocyte iNOS gene transcription and promoter activity. Biochem Biophys Res Commun. 1997 May 19;234(2):289–292. doi: 10.1006/bbrc.1997.6562. [DOI] [PubMed] [Google Scholar]
- Kuo P. C., Abe K., Schroeder R. A. Superoxide enhances interleukin 1beta-mediated transcription of the hepatocyte-inducible nitric oxide synthase gene. Gastroenterology. 2000 Mar;118(3):608–618. doi: 10.1016/s0016-5085(00)70268-x. [DOI] [PubMed] [Google Scholar]
- Lee S. K., Kim H. J., Na S. Y., Kim T. S., Choi H. S., Im S. Y., Lee J. W. Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J Biol Chem. 1998 Jul 3;273(27):16651–16654. doi: 10.1074/jbc.273.27.16651. [DOI] [PubMed] [Google Scholar]
- Mayer B., Schrammel A., Klatt P., Koesling D., Schmidt K. Peroxynitrite-induced accumulation of cyclic GMP in endothelial cells and stimulation of purified soluble guanylyl cyclase. Dependence on glutathione and possible role of S-nitrosation. J Biol Chem. 1995 Jul 21;270(29):17355–17360. doi: 10.1074/jbc.270.29.17355. [DOI] [PubMed] [Google Scholar]
- Mészáros K., Aberle S., White M., Parent J. B. Immunoreactivity and bioactivity of lipopolysaccharide-binding protein in normal and heat-inactivated sera. Infect Immun. 1995 Jan;63(1):363–365. doi: 10.1128/iai.63.1.363-365.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogryzko V. V., Schiltz R. L., Russanova V., Howard B. H., Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996 Nov 29;87(5):953–959. doi: 10.1016/s0092-8674(00)82001-2. [DOI] [PubMed] [Google Scholar]
- Perkins N. D., Felzien L. K., Betts J. C., Leung K., Beach D. H., Nabel G. J. Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science. 1997 Jan 24;275(5299):523–527. doi: 10.1126/science.275.5299.523. [DOI] [PubMed] [Google Scholar]
- Powis G., Briehl M., Oblong J. Redox signalling and the control of cell growth and death. Pharmacol Ther. 1995;68(1):149–173. doi: 10.1016/0163-7258(95)02004-7. [DOI] [PubMed] [Google Scholar]
- Rahman Irfan, Gilmour Peter S., Jimenez Luis Albert, MacNee William. Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol Cell Biochem. 2002 May-Jun;234-235(1-2):239–248. [PubMed] [Google Scholar]
- Rahman Irfan. Oxidative stress, transcription factors and chromatin remodelling in lung inflammation. Biochem Pharmacol. 2002 Sep;64(5-6):935–942. doi: 10.1016/s0006-2952(02)01153-x. [DOI] [PubMed] [Google Scholar]
- Schreck R., Rieber P., Baeuerle P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991 Aug;10(8):2247–2258. doi: 10.1002/j.1460-2075.1991.tb07761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulze-Osthoff K., Los M., Baeuerle P. A. Redox signalling by transcription factors NF-kappa B and AP-1 in lymphocytes. Biochem Pharmacol. 1995 Sep 7;50(6):735–741. doi: 10.1016/0006-2952(95)02011-z. [DOI] [PubMed] [Google Scholar]
- Sen C. K., Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996 May;10(7):709–720. doi: 10.1096/fasebj.10.7.8635688. [DOI] [PubMed] [Google Scholar]
- Sergent O., Griffon B., Morel I., Chevanne M., Dubos M. P., Cillard P., Cillard J. Effect of nitric oxide on iron-mediated oxidative stress in primary rat hepatocyte culture. Hepatology. 1997 Jan;25(1):122–127. doi: 10.1002/hep.510250123. [DOI] [PubMed] [Google Scholar]
- Sheppard K. A., Rose D. W., Haque Z. K., Kurokawa R., McInerney E., Westin S., Thanos D., Rosenfeld M. G., Glass C. K., Collins T. Transcriptional activation by NF-kappaB requires multiple coactivators. Mol Cell Biol. 1999 Sep;19(9):6367–6378. doi: 10.1128/mcb.19.9.6367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spencer T. E., Jenster G., Burcin M. M., Allis C. D., Zhou J., Mizzen C. A., McKenna N. J., Onate S. A., Tsai S. Y., Tsai M. J. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997 Sep 11;389(6647):194–198. doi: 10.1038/38304. [DOI] [PubMed] [Google Scholar]
- Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998 Mar 1;12(5):599–606. doi: 10.1101/gad.12.5.599. [DOI] [PubMed] [Google Scholar]
- Vanden Berghe W., De Bosscher K., Boone E., Plaisance S., Haegeman G. The nuclear factor-kappaB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J Biol Chem. 1999 Nov 5;274(45):32091–32098. doi: 10.1074/jbc.274.45.32091. [DOI] [PubMed] [Google Scholar]
- Yang X. J., Ogryzko V. V., Nishikawa J., Howard B. H., Nakatani Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature. 1996 Jul 25;382(6589):319–324. doi: 10.1038/382319a0. [DOI] [PubMed] [Google Scholar]
- Yu Zhiyuan, Zhang Wenzheng, Kone Bruce C. Histone deacetylases augment cytokine induction of the iNOS gene. J Am Soc Nephrol. 2002 Aug;13(8):2009–2017. doi: 10.1097/01.asn.0000024253.59665.f1. [DOI] [PubMed] [Google Scholar]
- Zhong H., SuYang H., Erdjument-Bromage H., Tempst P., Ghosh S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell. 1997 May 2;89(3):413–424. doi: 10.1016/s0092-8674(00)80222-6. [DOI] [PubMed] [Google Scholar]
- Zhong H., Voll R. E., Ghosh S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell. 1998 Apr;1(5):661–671. doi: 10.1016/s1097-2765(00)80066-0. [DOI] [PubMed] [Google Scholar]
