Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 1;377(Pt 3):653–663. doi: 10.1042/BJ20031397

Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy.

Stephen A Watt 1, Wendy A Kimber 1, Ian N Fleming 1, Nick R Leslie 1, C Peter Downes 1, John M Lucocq 1
PMCID: PMC1223916  PMID: 14604433

Abstract

PtdIns(3,4) P (2), a breakdown product of the lipid second messenger PtdIns(3,4,5) P (3), is a key signalling molecule in pathways controlling various cellular events. Cellular levels of PtdIns(3,4) P (2) are elevated upon agonist stimulation, mediating downstream signalling pathways by recruiting proteins containing specialized lipid-binding modules, such as the pleckstrin homology (PH) domain. A recently identified protein, TAPP1 (tandem-PH-domain-containing protein 1), has been shown to interact in vitro with high affinity and specificity with PtdIns(3,4) P (2) through its C-terminal PH domain. In the present study, we have utilized this PH domain tagged with glutathione S-transferase (GST-TAPP1-PH) as a probe in an on-section immunoelectron microscopy labelling procedure, mapping the subcellular distribution of PtdIns(3,4) P (2). As expected, we found accumulation of PtdIns(3,4) P (2) at the plasma membrane in response to the agonists platelet-derived growth factor and hydrogen peroxide. Importantly, however, we also found agonist stimulated PtdIns(3,4) P (2) labelling of intracellular organelles, including the endoplasmic reticulum and multivesicular endosomes. Expression of the 3-phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in PTEN-null U87MG cells revealed differential sensitivity of these lipid pools to the enzyme. These data suggest a role for PtdIns(3,4) P (2) in endomembrane function.

Full Text

The Full Text of this article is available as a PDF (246.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. E., Lipp P., Bootman M., Ridley S. H., Coadwell J., Rönnstrand L., Lennartsson J., Holmes A. B., Painter G. F., Thuring J. DAPP1 undergoes a PI 3-kinase-dependent cycle of plasma-membrane recruitment and endocytosis upon cell stimulation. Curr Biol. 2000 Nov 16;10(22):1403–1412. doi: 10.1016/s0960-9822(00)00794-6. [DOI] [PubMed] [Google Scholar]
  2. Babior B. M. NADPH oxidase: an update. Blood. 1999 Mar 1;93(5):1464–1476. [PubMed] [Google Scholar]
  3. Balla Andras, Tuymetova Galina, Barshishat Michal, Geiszt Miklos, Balla Tamas. Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J Biol Chem. 2002 Mar 28;277(22):20041–20050. doi: 10.1074/jbc.M111807200. [DOI] [PubMed] [Google Scholar]
  4. Banfić H., Tang X., Batty I. H., Downes C. P., Chen C., Rittenhouse S. E. A novel integrin-activated pathway forms PKB/Akt-stimulatory phosphatidylinositol 3,4-bisphosphate via phosphatidylinositol 3-phosphate in platelets. J Biol Chem. 1998 Jan 2;273(1):13–16. doi: 10.1074/jbc.273.1.13. [DOI] [PubMed] [Google Scholar]
  5. Bodin S., Giuriato S., Ragab J., Humbel B. M., Viala C., Vieu C., Chap H., Payrastre B. Production of phosphatidylinositol 3,4,5-trisphosphate and phosphatidic acid in platelet rafts: evidence for a critical role of cholesterol-enriched domains in human platelet activation. Biochemistry. 2001 Dec 18;40(50):15290–15299. doi: 10.1021/bi0109313. [DOI] [PubMed] [Google Scholar]
  6. Cheung P. C., Trinkle-Mulcahy L., Cohen P., Lucocq J. M. Characterization of a novel phosphatidylinositol 3-phosphate-binding protein containing two FYVE fingers in tandem that is targeted to the Golgi. Biochem J. 2001 Apr 1;355(Pt 1):113–121. doi: 10.1042/0264-6021:3550113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cockcroft S., De Matteis M. A. Inositol lipids as spatial regulators of membrane traffic. J Membr Biol. 2001 Apr 1;180(3):187–194. doi: 10.1007/s002320010069. [DOI] [PubMed] [Google Scholar]
  8. Corvera S., D'Arrigo A., Stenmark H. Phosphoinositides in membrane traffic. Curr Opin Cell Biol. 1999 Aug;11(4):460–465. doi: 10.1016/S0955-0674(99)80066-0. [DOI] [PubMed] [Google Scholar]
  9. Cox D., Dale B. M., Kashiwada M., Helgason C. D., Greenberg S. A regulatory role for Src homology 2 domain-containing inositol 5'-phosphatase (SHIP) in phagocytosis mediated by Fc gamma receptors and complement receptor 3 (alpha(M)beta(2); CD11b/CD18). J Exp Med. 2001 Jan 1;193(1):61–71. doi: 10.1084/jem.193.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Currie R. A., Walker K. S., Gray A., Deak M., Casamayor A., Downes C. P., Cohen P., Alessi D. R., Lucocq J. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J. 1999 Feb 1;337(Pt 3):575–583. [PMC free article] [PubMed] [Google Scholar]
  11. De Matteis Maria, Godi Anna, Corda Daniela. Phosphoinositides and the golgi complex. Curr Opin Cell Biol. 2002 Aug;14(4):434–447. doi: 10.1016/s0955-0674(02)00357-5. [DOI] [PubMed] [Google Scholar]
  12. Divecha N., Clarke J. H., Roefs M., Halstead J. R., D'Santos C. Nuclear inositides: inconsistent consistencies. Cell Mol Life Sci. 2000 Mar;57(3):379–393. doi: 10.1007/PL00000700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Domin J., Gaidarov I., Smith M. E., Keen J. H., Waterfield M. D. The class II phosphoinositide 3-kinase PI3K-C2alpha is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J Biol Chem. 2000 Apr 21;275(16):11943–11950. doi: 10.1074/jbc.275.16.11943. [DOI] [PubMed] [Google Scholar]
  14. Dowler S., Currie R. A., Campbell D. G., Deak M., Kular G., Downes C. P., Alessi D. R. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J. 2000 Oct 1;351(Pt 1):19–31. doi: 10.1042/0264-6021:3510019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dowler S., Currie R. A., Downes C. P., Alessi D. R. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem J. 1999 Aug 15;342(Pt 1):7–12. [PMC free article] [PubMed] [Google Scholar]
  16. Fleming I. N., Gray A., Downes C. P. Regulation of the Rac1-specific exchange factor Tiam1 involves both phosphoinositide 3-kinase-dependent and -independent components. Biochem J. 2000 Oct 1;351(Pt 1):173–182. doi: 10.1042/0264-6021:3510173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Franke T. F., Kaplan D. R., Cantley L. C., Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science. 1997 Jan 31;275(5300):665–668. doi: 10.1126/science.275.5300.665. [DOI] [PubMed] [Google Scholar]
  18. Futter C. E., Collinson L. M., Backer J. M., Hopkins C. R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J Cell Biol. 2001 Dec 24;155(7):1251–1264. doi: 10.1083/jcb.200108152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gillooly D. J., Morrow I. C., Lindsay M., Gould R., Bryant N. J., Gaullier J. M., Parton R. G., Stenmark H. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 2000 Sep 1;19(17):4577–4588. doi: 10.1093/emboj/19.17.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gray A., Van Der Kaay J., Downes C. P. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J. 1999 Dec 15;344(Pt 3):929–936. [PMC free article] [PubMed] [Google Scholar]
  21. Gurung Rajendra, Tan April, Ooms Lisa M., McGrath Meagan J., Huysmans Richard D., Munday Adam D., Prescott Mark, Whisstock James C., Mitchell Christina A. Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization. The inositol 5-phosphatase skip localizes to the endoplasmic reticulum and translocates to membrane ruffles following epidermal growth factor stimulation. J Biol Chem. 2003 Jan 20;278(13):11376–11385. doi: 10.1074/jbc.M209991200. [DOI] [PubMed] [Google Scholar]
  22. Kanai F., Liu H., Field S. J., Akbary H., Matsuo T., Brown G. E., Cantley L. C., Yaffe M. B. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol. 2001 Jul;3(7):675–678. doi: 10.1038/35083070. [DOI] [PubMed] [Google Scholar]
  23. Kimber Wendy A., Trinkle-Mulcahy Laura, Cheung Peter C. F., Deak Maria, Marsden Louisa J., Kieloch Agnieszka, Watt Stephen, Javier Ronald T., Gray Alex, Downes C. Peter. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J. 2002 Feb 1;361(Pt 3):525–536. doi: 10.1042/0264-6021:3610525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kong A. M., Speed C. J., O'Malley C. J., Layton M. J., Meehan T., Loveland K. L., Cheema S., Ooms L. M., Mitchell C. A. Cloning and characterization of a 72-kDa inositol-polyphosphate 5-phosphatase localized to the Golgi network. J Biol Chem. 2000 Aug 4;275(31):24052–24064. doi: 10.1074/jbc.M000874200. [DOI] [PubMed] [Google Scholar]
  25. Laux T., Fukami K., Thelen M., Golub T., Frey D., Caroni P. GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol. 2000 Jun 26;149(7):1455–1472. doi: 10.1083/jcb.149.7.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Leevers S. J., Vanhaesebroeck B., Waterfield M. D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol. 1999 Apr;11(2):219–225. doi: 10.1016/s0955-0674(99)80029-5. [DOI] [PubMed] [Google Scholar]
  27. Lemmon M. A., Ferguson K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J. 2000 Aug 15;350(Pt 1):1–18. [PMC free article] [PubMed] [Google Scholar]
  28. Leslie N. R., Bennett D., Gray A., Pass I., Hoang-Xuan K., Downes C. P. Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochem J. 2001 Jul 15;357(Pt 2):427–435. doi: 10.1042/0264-6021:3570427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Leslie N. R., Gray A., Pass I., Orchiston E. A., Downes C. P. Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations: differential effects of C-terminal deletion on signalling pathways downstream of phosphoinositide 3-kinase. Biochem J. 2000 Mar 15;346(Pt 3):827–833. [PMC free article] [PubMed] [Google Scholar]
  30. Levine T. P., Munro S. The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr Biol. 1998 Jun 18;8(13):729–739. doi: 10.1016/s0960-9822(98)70296-9. [DOI] [PubMed] [Google Scholar]
  31. Lucocq J. Quantitation of gold labelling and antigens in immunolabelled ultrathin sections. J Anat. 1994 Feb;184(Pt 1):1–13. [PMC free article] [PubMed] [Google Scholar]
  32. Matsuoka K., Orci L., Amherdt M., Bednarek S. Y., Hamamoto S., Schekman R., Yeung T. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell. 1998 Apr 17;93(2):263–275. doi: 10.1016/s0092-8674(00)81577-9. [DOI] [PubMed] [Google Scholar]
  33. Nakamura Koji, Malykhin Alexander, Coggeshall K. Mark. The Src homology 2 domain-containing inositol 5-phosphatase negatively regulates Fcgamma receptor-mediated phagocytosis through immunoreceptor tyrosine-based activation motif-bearing phagocytic receptors. Blood. 2002 Nov 1;100(9):3374–3382. doi: 10.1182/blood-2002-03-0787. [DOI] [PubMed] [Google Scholar]
  34. Neri Luca M., Borgatti Paola, Capitani Silvano, Martelli Alberto M. The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim Biophys Acta. 2002 Oct 10;1584(2-3):73–80. doi: 10.1016/s1388-1981(02)00300-1. [DOI] [PubMed] [Google Scholar]
  35. Osborne S. L., Thomas C. L., Gschmeissner S., Schiavo G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci. 2001 Jul;114(Pt 13):2501–2511. doi: 10.1242/jcs.114.13.2501. [DOI] [PubMed] [Google Scholar]
  36. Pike L. J., Casey L. Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J Biol Chem. 1996 Oct 25;271(43):26453–26456. doi: 10.1074/jbc.271.43.26453. [DOI] [PubMed] [Google Scholar]
  37. Scheid Michael P., Huber Michael, Damen Jacqueline E., Hughes Michael, Kang Veronica, Neilsen Paul, Prestwich Glenn D., Krystal Gerald, Duronio Vincent. Phosphatidylinositol (3,4,5)P3 is essential but not sufficient for protein kinase B (PKB) activation; phosphatidylinositol (3,4)P2 is required for PKB phosphorylation at Ser-473: studies using cells from SH2-containing inositol-5-phosphatase knockout mice. J Biol Chem. 2002 Jan 7;277(11):9027–9035. doi: 10.1074/jbc.M106755200. [DOI] [PubMed] [Google Scholar]
  38. Simonsen A., Wurmser A. E., Emr S. D., Stenmark H. The role of phosphoinositides in membrane transport. Curr Opin Cell Biol. 2001 Aug;13(4):485–492. doi: 10.1016/s0955-0674(00)00240-4. [DOI] [PubMed] [Google Scholar]
  39. Speed C. J., Matzaris M., Bird P. I., Mitchell C. A. Tissue distribution and intracellular localisation of the 75-kDa inositol polyphosphate 5-phosphatase. Eur J Biochem. 1995 Nov 15;234(1):216–224. doi: 10.1111/j.1432-1033.1995.216_c.x. [DOI] [PubMed] [Google Scholar]
  40. Stahelin Robert V., Burian Aura, Bruzik Karol S., Murray Diana, Cho Wonhwa. Membrane binding mechanisms of the PX domains of NADPH oxidase p40phox and p47phox. J Biol Chem. 2003 Jan 29;278(16):14469–14479. doi: 10.1074/jbc.M212579200. [DOI] [PubMed] [Google Scholar]
  41. Tanaka K., Horiguchi K., Yoshida T., Takeda M., Fujisawa H., Takeuchi K., Umeda M., Kato S., Ihara S., Nagata S. Evidence that a phosphatidylinositol 3,4,5-trisphosphate-binding protein can function in nucleus. J Biol Chem. 1999 Feb 12;274(7):3919–3922. doi: 10.1074/jbc.274.7.3919. [DOI] [PubMed] [Google Scholar]
  42. Thomas C. C., Dowler S., Deak M., Alessi D. R., van Aalten D. M. Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity. Biochem J. 2001 Sep 1;358(Pt 2):287–294. doi: 10.1042/0264-6021:3580287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Van der Kaay J., Beck M., Gray A., Downes C. P. Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses. J Biol Chem. 1999 Dec 10;274(50):35963–35968. doi: 10.1074/jbc.274.50.35963. [DOI] [PubMed] [Google Scholar]
  44. Vanhaesebroeck B., Alessi D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000 Mar 15;346(Pt 3):561–576. [PMC free article] [PubMed] [Google Scholar]
  45. Vanhaesebroeck B., Leevers S. J., Ahmadi K., Timms J., Katso R., Driscoll P. C., Woscholski R., Parker P. J., Waterfield M. D. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem. 2001;70:535–602. doi: 10.1146/annurev.biochem.70.1.535. [DOI] [PubMed] [Google Scholar]
  46. Walker S. M., Downes C. P., Leslie N. R. TPIP: a novel phosphoinositide 3-phosphatase. Biochem J. 2001 Dec 1;360(Pt 2):277–283. doi: 10.1042/0264-6021:3600277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Watt Stephen A., Kular Gursant, Fleming Ian N., Downes C. Peter, Lucocq John M. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. Biochem J. 2002 May 1;363(Pt 3):657–666. doi: 10.1042/0264-6021:3630657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Waugh Mark G., Minogue Shane, Anderson J. Simon, Balinger Adam, Blumenkrantz Deena, Calnan Denis P., Cramer Rainer, Hsuan J. Justin. Localization of a highly active pool of type II phosphatidylinositol 4-kinase in a p97/valosin-containing-protein-rich fraction of the endoplasmic reticulum. Biochem J. 2003 Jul 1;373(Pt 1):57–63. doi: 10.1042/BJ20030089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wong K., Meyers ddR, Cantley L. C. Subcellular locations of phosphatidylinositol 4-kinase isoforms. J Biol Chem. 1997 May 16;272(20):13236–13241. doi: 10.1074/jbc.272.20.13236. [DOI] [PubMed] [Google Scholar]
  50. Wurmser A. E., Emr S. D. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J. 1998 Sep 1;17(17):4930–4942. doi: 10.1093/emboj/17.17.4930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yokogawa T., Nagata S., Nishio Y., Tsutsumi T., Ihara S., Shirai R., Morita K., Umeda M., Shirai Y., Saitoh N. Evidence that 3'-phosphorylated polyphosphoinositides are generated at the nuclear surface: use of immunostaining technique with monoclonal antibodies specific for PI 3,4-P(2). FEBS Lett. 2000 May 12;473(2):222–226. doi: 10.1016/s0014-5793(00)01535-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES