Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):129–139. doi: 10.1042/BJ20031370

Hormonal regulation of phospholipase Cepsilon through distinct and overlapping pathways involving G12 and Ras family G-proteins.

Grant G Kelley 1, Sarah E Reks 1, Alan V Smrcka 1
PMCID: PMC1223921  PMID: 14567755

Abstract

PLCepsilon (phospholipase Cepsilon) is a novel PLC that has a CDC25 guanine nucleotide exchange factor domain and two RA (Ras-association) domains of which the second (RA2) is critical for Ras activation of the enzyme. In the present studies, we examined hormonal stimulation to elucidate receptor-mediated pathways that functionally regulate PLCepsilon. We demonstrate that EGF (epidermal growth factor), a receptor tyrosine kinase agonist, and LPA (lysophosphatidic acid), S1P (sphingosine 1-phosphate) and thrombin, GPCR (G-protein-coupled receptor) agonists, stimulate PLCepsilon overexpressed in COS-7 cells. EGF stimulated PLCepsilon in an RA2-dependent manner through Ras and Rap. In contrast, LPA, S1P and thrombin stimulated PLCepsilon by both RA2-independent and -dependent mechanisms. To determine the G-proteins that mediate the effects of these GPCR agonists, we co-expressed constitutively active G-proteins with PLCepsilon and found that G(alpha12), G(alpha13), Rho, Rac and Ral stimulate PLCepsilon in an RA2-independent manner; whereas TC21, Rap1A, Rap2A and Rap2B stimulate PLCepsilon in an RA2-dependent manner similar to H-Ras. Of these G-proteins, we show that G(alpha12)/G(alpha13) and Rap partly mediate the effects of LPA, S1P and thrombin to stimulate PLCepsilon. In addition, the stimulation by LPA and S1P is also partly sensitive to pertussis toxin. These studies demonstrate diverse hormonal regulation of PLCepsilon by distinct and overlapping pathways.

Full Text

The Full Text of this article is available as a PDF (384.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buday L., Downward J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell. 1993 May 7;73(3):611–620. doi: 10.1016/0092-8674(93)90146-h. [DOI] [PubMed] [Google Scholar]
  2. Chun Jerold, Goetzl Edward J., Hla Timothy, Igarashi Yasuyuki, Lynch Kevin R., Moolenaar Wouter, Pyne Susan, Tigyi Gabor. International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol Rev. 2002 Jun;54(2):265–269. doi: 10.1124/pr.54.2.265. [DOI] [PubMed] [Google Scholar]
  3. Daub H., Wallasch C., Lankenau A., Herrlich A., Ullrich A. Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 1997 Dec 1;16(23):7032–7044. doi: 10.1093/emboj/16.23.7032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evellin Sandrine, Nolte Jan, Tysack Karina, vom Dorp Frank, Thiel Markus, Weernink Paschal A. Oude, Jakobs Karl H., Webb Edwin J., Lomasney Jon W., Schmidt Martina. Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J Biol Chem. 2002 Mar 4;277(19):16805–16813. doi: 10.1074/jbc.M112024200. [DOI] [PubMed] [Google Scholar]
  5. Gohla A., Harhammer R., Schultz G. The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J Biol Chem. 1998 Feb 20;273(8):4653–4659. doi: 10.1074/jbc.273.8.4653. [DOI] [PubMed] [Google Scholar]
  6. Hu C. D., Kariya K., Tamada M., Akasaka K., Shirouzu M., Yokoyama S., Kataoka T. Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J Biol Chem. 1995 Dec 22;270(51):30274–30277. doi: 10.1074/jbc.270.51.30274. [DOI] [PubMed] [Google Scholar]
  7. Jin T. G., Satoh T., Liao Y., Song C., Gao X., Kariya K., Hu C. D., Kataoka T. Role of the CDC25 homology domain of phospholipase Cepsilon in amplification of Rap1-dependent signaling. J Biol Chem. 2001 Jun 6;276(32):30301–30307. doi: 10.1074/jbc.M103530200. [DOI] [PubMed] [Google Scholar]
  8. Kao S., Jaiswal R. K., Kolch W., Landreth G. E. Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem. 2001 Mar 13;276(21):18169–18177. doi: 10.1074/jbc.M008870200. [DOI] [PubMed] [Google Scholar]
  9. Kelley G. G., Reks S. E., Ondrako J. M., Smrcka A. V. Phospholipase C(epsilon): a novel Ras effector. EMBO J. 2001 Feb 15;20(4):743–754. doi: 10.1093/emboj/20.4.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim J. H., Kim J. H., Song W. K., Kim J. H., Chun J. S. Sphingosine 1-phosphate activates Erk-1/-2 by transactivating epidermal growth factor receptor in rat-2 cells. IUBMB Life. 2000 Aug;50(2):119–124. doi: 10.1080/713803698. [DOI] [PubMed] [Google Scholar]
  11. Kluk Michael J., Hla Timothy. Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim Biophys Acta. 2002 May 23;1582(1-3):72–80. doi: 10.1016/s1388-1981(02)00139-7. [DOI] [PubMed] [Google Scholar]
  12. Kranenburg O., Moolenaar W. H. Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene. 2001 Mar 26;20(13):1540–1546. doi: 10.1038/sj.onc.1204187. [DOI] [PubMed] [Google Scholar]
  13. Lopez I., Mak E. C., Ding J., Hamm H. E., Lomasney J. W. A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem. 2000 Oct 5;276(4):2758–2765. doi: 10.1074/jbc.M008119200. [DOI] [PubMed] [Google Scholar]
  14. Macfarlane S. R., Seatter M. J., Kanke T., Hunter G. D., Plevin R. Proteinase-activated receptors. Pharmacol Rev. 2001 Jun;53(2):245–282. [PubMed] [Google Scholar]
  15. Margolis B., Rhee S. G., Felder S., Mervic M., Lyall R., Levitzki A., Ullrich A., Zilberstein A., Schlessinger J. EGF induces tyrosine phosphorylation of phospholipase C-II: a potential mechanism for EGF receptor signaling. Cell. 1989 Jun 30;57(7):1101–1107. doi: 10.1016/0092-8674(89)90047-0. [DOI] [PubMed] [Google Scholar]
  16. Murphy Gretchen A., Graham Suzanne M., Morita Staeci, Reks Sarah E., Rogers-Graham Kelley, Vojtek Anne, Kelley Grant G., Der Channing J. Involvement of phosphatidylinositol 3-kinase, but not RalGDS, in TC21/R-Ras2-mediated transformation. J Biol Chem. 2002 Jan 11;277(12):9966–9975. doi: 10.1074/jbc.M109059200. [DOI] [PubMed] [Google Scholar]
  17. Ohba Y., Mochizuki N., Matsuo K., Yamashita S., Nakaya M., Hashimoto Y., Hamaguchi M., Kurata T., Nagashima K., Matsuda M. Rap2 as a slowly responding molecular switch in the Rap1 signaling cascade. Mol Cell Biol. 2000 Aug;20(16):6074–6083. doi: 10.1128/mcb.20.16.6074-6083.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pierce K. L., Tohgo A., Ahn S., Field M. E., Luttrell L. M., Lefkowitz R. J. Epidermal growth factor (EGF) receptor-dependent ERK activation by G protein-coupled receptors: a co-culture system for identifying intermediates upstream and downstream of heparin-binding EGF shedding. J Biol Chem. 2001 Apr 4;276(25):23155–23160. doi: 10.1074/jbc.M101303200. [DOI] [PubMed] [Google Scholar]
  19. Prenzel N., Zwick E., Daub H., Leserer M., Abraham R., Wallasch C., Ullrich A. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 1999 Dec 23;402(6764):884–888. doi: 10.1038/47260. [DOI] [PubMed] [Google Scholar]
  20. Quilliam Lawrence A., Rebhun John F., Castro Ariel F. A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol. 2002;71:391–444. doi: 10.1016/s0079-6603(02)71047-7. [DOI] [PubMed] [Google Scholar]
  21. Rebecchi M. J., Pentyala S. N. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 2000 Oct;80(4):1291–1335. doi: 10.1152/physrev.2000.80.4.1291. [DOI] [PubMed] [Google Scholar]
  22. Rhee S. G. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001;70:281–312. doi: 10.1146/annurev.biochem.70.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Riese D. J., 2nd, Stern D. F. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays. 1998 Jan;20(1):41–48. doi: 10.1002/(SICI)1521-1878(199801)20:1<41::AID-BIES7>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  24. Rubinfeld B., Munemitsu S., Clark R., Conroy L., Watt K., Crosier W. J., McCormick F., Polakis P. Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1. Cell. 1991 Jun 14;65(6):1033–1042. doi: 10.1016/0092-8674(91)90555-d. [DOI] [PubMed] [Google Scholar]
  25. Schmidt Anja, Hall Alan. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002 Jul 1;16(13):1587–1609. doi: 10.1101/gad.1003302. [DOI] [PubMed] [Google Scholar]
  26. Schmidt M., Evellin S., Weernink P. A., von Dorp F., Rehmann H., Lomasney J. W., Jakobs K. H. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol. 2001 Nov;3(11):1020–1024. doi: 10.1038/ncb1101-1020. [DOI] [PubMed] [Google Scholar]
  27. Shi C. S., Sinnarajah S., Cho H., Kozasa T., Kehrl J. H. G13alpha-mediated PYK2 activation. PYK2 is a mediator of G13alpha -induced serum response element-dependent transcription. J Biol Chem. 2000 Aug 11;275(32):24470–24476. doi: 10.1074/jbc.M908449199. [DOI] [PubMed] [Google Scholar]
  28. Shima F., Okada T., Kido M., Sen H., Tanaka Y., Tamada M., Hu C. D., Yamawaki-Kataoka Y., Kariya K., Kataoka T. Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation. Mol Cell Biol. 2000 Jan;20(1):26–33. doi: 10.1128/mcb.20.1.26-33.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Song C., Hu C. D., Masago M., Kariyai K., Yamawaki-Kataoka Y., Shibatohge M., Wu D., Satoh T., Kataoka T. Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem. 2000 Oct 5;276(4):2752–2757. doi: 10.1074/jbc.M008324200. [DOI] [PubMed] [Google Scholar]
  30. Song Chunhua, Satoh Takaya, Edamatsu Hironori, Wu Dongmei, Tadano Makoto, Gao Xianlong, Kataoka Tohru. Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon. Oncogene. 2002 Nov 21;21(53):8105–8113. doi: 10.1038/sj.onc.1206003. [DOI] [PubMed] [Google Scholar]
  31. Wing M. R., Houston D., Kelley G. G., Der C. J., Siderovski D. P., Harden T. K. Activation of phospholipase C-epsilon by heterotrimeric G protein betagamma-subunits. J Biol Chem. 2001 Oct 18;276(51):48257–48261. doi: 10.1074/jbc.C100574200. [DOI] [PubMed] [Google Scholar]
  32. Zwartkruis F. J., Bos J. L. Ras and Rap1: two highly related small GTPases with distinct function. Exp Cell Res. 1999 Nov 25;253(1):157–165. doi: 10.1006/excr.1999.4695. [DOI] [PubMed] [Google Scholar]
  33. Zwartkruis F. J., Wolthuis R. M., Nabben N. M., Franke B., Bos J. L. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J. 1998 Oct 15;17(20):5905–5912. doi: 10.1093/emboj/17.20.5905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van Biesen T., Hawes B. E., Raymond J. R., Luttrell L. M., Koch W. J., Lefkowitz R. J. G(o)-protein alpha-subunits activate mitogen-activated protein kinase via a novel protein kinase C-dependent mechanism. J Biol Chem. 1996 Jan 19;271(3):1266–1269. doi: 10.1074/jbc.271.3.1266. [DOI] [PubMed] [Google Scholar]
  35. van Corven E. J., Hordijk P. L., Medema R. H., Bos J. L., Moolenaar W. H. Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1257–1261. doi: 10.1073/pnas.90.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES