Abstract
In the present study, we investigated the possibility that MHC (myosin heavy chain) and TnC (troponin C) isoforms exist in specific combinations in rat-skeletal-muscle fibres. Single fibres (numbering 245) from soleus (predominantly slow-twitch) and sternomastoid (predominantly fast-twitch) muscles of adult rats were analysed for MHC and TnC isoform composition, using alanine-SDS/PAGE for separating MHC isoforms, and a novel method (based on the previously reported influence of Ca2+ on the mobility of Ca2+-binding proteins in SDS gels) for unequivocal identification of TnC isoforms in single-fibre segments. In this study, all fibres that contained only one MHC isoform (slow or fast) contained only the matching TnC isoform and all fibres that contained multiple fast MHC isoforms contained only the fast TnC isoform. Fibres expressing both slow and fast MHC isoforms displayed either both TnC isoforms or only one TnC isoform of a type depending on the relative proportion of fast/slow MHC present. Our results suggest a close relationship between MHC and TnC isoform composition in non-transforming skeletal muscles of adult rat.
Full Text
The Full Text of this article is available as a PDF (147.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akella A. B., Su H., Sonnenblick E. H., Rao V. G., Gulati J. The cardiac troponin C isoform and the length dependence of Ca2+ sensitivity of tension in myocardium. J Mol Cell Cardiol. 1997 Jan;29(1):381–389. doi: 10.1006/jmcc.1996.0282. [DOI] [PubMed] [Google Scholar]
- Babu A., Scordilis S. P., Sonnenblick E. H., Gulati J. The control of myocardial contraction with skeletal fast muscle troponin C. J Biol Chem. 1987 Apr 25;262(12):5815–5822. [PubMed] [Google Scholar]
- Babu A., Su H., Ryu Y., Gulati J. Determination of residue specificity in the EF-hand of troponin C for Ca2+ coordination, by genetic engineering. J Biol Chem. 1992 Aug 5;267(22):15469–15474. [PubMed] [Google Scholar]
- Bortolotto S. K., Cellini M., Stephenson D. G., Stephenson G. M. MHC isoform composition and Ca(2+)- or Sr(2+)-activation properties of rat skeletal muscle fibers. Am J Physiol Cell Physiol. 2000 Nov;279(5):C1564–C1577. doi: 10.1152/ajpcell.2000.279.5.C1564. [DOI] [PubMed] [Google Scholar]
- Bottinelli R., Canepari M., Reggiani C., Stienen G. J. Myofibrillar ATPase activity during isometric contraction and isomyosin composition in rat single skinned muscle fibres. J Physiol. 1994 Dec 15;481(Pt 3):663–675. doi: 10.1113/jphysiol.1994.sp020472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bottinelli R. Functional heterogeneity of mammalian single muscle fibres: do myosin isoforms tell the whole story? Pflugers Arch. 2001 Oct;443(1):6–17. doi: 10.1007/s004240100700. [DOI] [PubMed] [Google Scholar]
- Brandt P. W., Schachat F. H. Troponin C modulates the activation of thin filaments by rigor cross-bridges. Biophys J. 1997 May;72(5):2262–2267. doi: 10.1016/S0006-3495(97)78870-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess W. H., Jemiolo D. K., Kretsinger R. H. Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim Biophys Acta. 1980 Jun 26;623(2):257–270. doi: 10.1016/0005-2795(80)90254-8. [DOI] [PubMed] [Google Scholar]
- Danieli-Betto D., Betto R., Midrio M. Calcium sensitivity and myofibrillar protein isoforms of rat skinned skeletal muscle fibres. Pflugers Arch. 1990 Nov;417(3):303–308. doi: 10.1007/BF00370996. [DOI] [PubMed] [Google Scholar]
- Geiger P. C., Cody M. J., Sieck G. C. Force-calcium relationship depends on myosin heavy chain and troponin isoforms in rat diaphragm muscle fibers. J Appl Physiol (1985) 1999 Nov;87(5):1894–1900. doi: 10.1152/jappl.1999.87.5.1894. [DOI] [PubMed] [Google Scholar]
- Goodman Craig, Patterson Michael, Stephenson Gabriela. MHC-based fiber type and E-C coupling characteristics in mechanically skinned muscle fibers of the rat. Am J Physiol Cell Physiol. 2003 Jan 29;284(6):C1448–C1459. doi: 10.1152/ajpcell.00569.2002. [DOI] [PubMed] [Google Scholar]
- Gordon A. M., Homsher E., Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000 Apr;80(2):853–924. doi: 10.1152/physrev.2000.80.2.853. [DOI] [PubMed] [Google Scholar]
- Grab D. J., Berzins K., Cohen R. S., Siekevitz P. Presence of calmodulin in postsynaptic densities isolated from canine cerebral cortex. J Biol Chem. 1979 Sep 10;254(17):8690–8696. [PubMed] [Google Scholar]
- Gulati J., Scordilis S., Babu A. Effect of troponin C on the cooperativity in Ca2+ activation of cardiac muscle. FEBS Lett. 1988 Aug 29;236(2):441–444. doi: 10.1016/0014-5793(88)80073-5. [DOI] [PubMed] [Google Scholar]
- Hai Hong, Sano Ken-Ichi, Maeda Kayo, Maéda Yuichiro, Miki Masao. Ca2+- and S1-induced conformational changes of reconstituted skeletal muscle thin filaments observed by fluorescence energy transfer spectroscopy: structural evidence for three States of thin filament. J Biochem. 2002 Mar;131(3):407–418. doi: 10.1093/oxfordjournals.jbchem.a003116. [DOI] [PubMed] [Google Scholar]
- Head J. F., Perry S. V. The interaction of the calcium-binding protein (troponin C) with bivalent cations and the inhibitory protein (troponin I). Biochem J. 1974 Feb;137(2):145–154. doi: 10.1042/bj1370145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Head J. F., Weeks R. A., Perry S. V. Affinity-chromatographic isolation and some properties of troponin C from different muscle types. Biochem J. 1977 Mar 1;161(3):465–471. doi: 10.1042/bj1610465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li H. C., Fajer P. G. Structural coupling of troponin C and actomyosin in muscle fibers. Biochemistry. 1998 May 12;37(19):6628–6635. doi: 10.1021/bi972062g. [DOI] [PubMed] [Google Scholar]
- Metzger J. M. Effects of troponin C isoforms on pH sensitivity of contraction in mammalian fast and slow skeletal muscle fibres. J Physiol. 1996 Apr 1;492(Pt 1):163–172. doi: 10.1113/jphysiol.1996.sp021298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss R. L., Diffee G. M., Greaser M. L. Contractile properties of skeletal muscle fibers in relation to myofibrillar protein isoforms. Rev Physiol Biochem Pharmacol. 1995;126:1–63. doi: 10.1007/BFb0049775. [DOI] [PubMed] [Google Scholar]
- Moss R. L., Lauer M. R., Giulian G. G., Greaser M. L. Altered Ca2+ dependence of tension development in skinned skeletal muscle fibers following modification of troponin by partial substitution with cardiac troponin C. J Biol Chem. 1986 May 5;261(13):6096–6099. [PubMed] [Google Scholar]
- Rhyner J. A., Koller M., Durussel-Gerber I., Cox J. A., Strehler E. E. Characterization of the human calmodulin-like protein expressed in Escherichia coli. Biochemistry. 1992 Dec 29;31(51):12826–12832. doi: 10.1021/bi00166a017. [DOI] [PubMed] [Google Scholar]
- Stienen G. J., Kiers J. L., Bottinelli R., Reggiani C. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence. J Physiol. 1996 Jun 1;493(Pt 2):299–307. doi: 10.1113/jphysiol.1996.sp021384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanokura M., Imaizumi M., Yamada K., Shiraishi F., Ohtsuki I. Preparation and characterization of troponin C from bullfrog skeletal muscle. J Biochem. 1992 Dec;112(6):800–803. doi: 10.1093/oxfordjournals.jbchem.a123979. [DOI] [PubMed] [Google Scholar]
- Xu G. Q., Hitchcock-DeGregori S. E. Synthesis of a troponin C cDNA and expression of wild-type and mutant proteins in Escherichia coli. J Biol Chem. 1988 Sep 25;263(27):13962–13969. [PubMed] [Google Scholar]
- Yates L. D., Greaser M. L. Troponin subunit stoichiometry and content in rabbit skeletal muscle and myofibrils. J Biol Chem. 1983 May 10;258(9):5770–5774. [PubMed] [Google Scholar]
