Abstract
An array of 13 biochemically well defined molecular forms of bovine, human and newly cloned rhesus macaque (Macaca mulatta) AChEs (acetylcholinesterases) differing in glycosylation and subunit assembly status were subjected to comparative pharmacokinetic studies in mice and rhesus macaques. The circulatory lifetimes of recombinant bovine, macaque and human AChEs in mice were governed by previously determined hierarchical rules; the longest circulatory residence time was obtained when AChE was fully sialylated and tetramerized [Kronman, Chitlaru, Elhanany, Velan and Shafferman (2000) J. Biol. Chem. 275, 29488-29502; Chitlaru, Kronman, Velan and Shafferman (2001) Biochem. J. 354, 613-625]. In rhesus macaques, bovine molecular forms still obeyed the same hierarchical rules, whereas primate AChEs showed significant deviation from this behaviour. Residence times of human and rhesus AChEs were effectively extended by extensive sialylation, but subunit tetramerization and N-glycan addition had a marginal effect on their circulatory longevity in macaques. It appears that the major factor responsible for the differential pharmacokinetics of bovine and primate AChEs in macaques is related to differences in primary structure, suggesting the existence of a specific mechanism for the circulatory clearance of primate AChEs in rhesus macaques. The 35 amino acids that differ between bovine and primate AChEs are clustered within three defined domains, all located at the enzyme surface, and may therefore mediate the facilitated removal of primate cholinesterases specifically from the circulation of monkeys. These surface domains can be effectively masked by poly(ethylene glycol) appendage, resulting in the generation of chemically modified human and macaque AChEs that reside in the circulation for extraordinarily long periods of time (mean residence time of 10000 min). This extended residence time is similar to that displayed by native macaque butyrylcholinesterase (9950 min), which is the prevalent cholinesterase form in the circulation of adult macaques.
Full Text
The Full Text of this article is available as a PDF (334.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aniya Y., Naito A. Oxidative stress-induced activation of microsomal glutathione S-transferase in isolated rat liver. Biochem Pharmacol. 1993 Jan 7;45(1):37–42. doi: 10.1016/0006-2952(93)90374-6. [DOI] [PubMed] [Google Scholar]
- Aoki S., Kitagawa M., Okumura K. Pharmacokinetic studies of Gln117 tissue-type plasminogen activator in rats. J Pharm Biomed Anal. 2001 Oct;26(3):453–462. doi: 10.1016/s0731-7085(01)00431-9. [DOI] [PubMed] [Google Scholar]
- Balasubramanian A. S., Bhanumathy C. D. Noncholinergic functions of cholinesterases. FASEB J. 1993 Nov;7(14):1354–1358. doi: 10.1096/fasebj.7.14.8224608. [DOI] [PubMed] [Google Scholar]
- Bigge J. C., Patel T. P., Bruce J. A., Goulding P. N., Charles S. M., Parekh R. B. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem. 1995 Sep 20;230(2):229–238. doi: 10.1006/abio.1995.1468. [DOI] [PubMed] [Google Scholar]
- Carmona G. N., Baum I., Schindler C. W., Goldberg S. R., Jufer R., Cone E., Slaughter E., Belendiuk G. W., Gorelick D. A. Plasma butyrylcholinesterase activity and cocaine half-life differ significantly in rhesus and squirrel monkeys. Life Sci. 1996;59(11):939–943. doi: 10.1016/0024-3205(96)00392-x. [DOI] [PubMed] [Google Scholar]
- Cascio C., Comite C., Ghiara M., Lanza G., Ponchione A. L'uso delle colinesterasi sieriche nella intossicazione grave da organofosforici. Nostra esperienza. Minerva Anestesiol. 1988 Jul-Aug;54(7-8):337–338. [PubMed] [Google Scholar]
- Chitlaru T., Kronman C., Velan B., Shafferman A. Effect of human acetylcholinesterase subunit assembly on its circulatory residence. Biochem J. 2001 Mar 15;354(Pt 3):613–625. doi: 10.1042/0264-6021:3540613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chitlaru T., Kronman C., Zeevi M., Kam M., Harel A., Ordentlich A., Velan B., Shafferman A. Modulation of circulatory residence of recombinant acetylcholinesterase through biochemical or genetic manipulation of sialylation levels. Biochem J. 1998 Dec 15;336(Pt 3):647–658. doi: 10.1042/bj3360647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chitlaru Theodor, Kronman Chanoch, Velan Baruch, Shafferman Avigdor. Overloading and removal of N-glycosylation targets on human acetylcholinesterase: effects on glycan composition and circulatory residence time. Biochem J. 2002 May 1;363(Pt 3):619–631. doi: 10.1042/0264-6021:3630619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen O., Kronman C., Chitlaru T., Ordentlich A., Velan B., Shafferman A. Effect of chemical modification of recombinant human acetylcholinesterase by polyethylene glycol on its circulatory longevity. Biochem J. 2001 Aug 1;357(Pt 3):795–802. doi: 10.1042/0264-6021:3570795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubaquié Y., Mortensen D. L., Intintoli A., Hogue D. A., Nakamura G., Rancatore P., Lester P., Sadick M. D., Filvaroff E., Fielder P. J. Binding protein-3-selective insulin-like growth factor I variants: engineering, biodistributions, and clearance. Endocrinology. 2001 Jan;142(1):165–173. doi: 10.1210/endo.142.1.7864. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Grisaru D., Sternfeld M., Eldor A., Glick D., Soreq H. Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem. 1999 Sep;264(3):672–686. doi: 10.1046/j.1432-1327.1999.00693.x. [DOI] [PubMed] [Google Scholar]
- Hosea N. A., Radić Z., Tsigelny I., Berman H. A., Quinn D. M., Taylor P. Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates. Biochemistry. 1996 Aug 20;35(33):10995–11004. doi: 10.1021/bi9611220. [DOI] [PubMed] [Google Scholar]
- Jenkins T., Balinsky D., Patient D. W. Cholinesterase in plasma: first reported absence in the Bantu; half-life determination. Science. 1967 Jun 30;156(3783):1748–1750. doi: 10.1126/science.156.3783.1748. [DOI] [PubMed] [Google Scholar]
- Keyt B. A., Paoni N. F., Refino C. J., Berleau L., Nguyen H., Chow A., Lai J., Peña L., Pater C., Ogez J. A faster-acting and more potent form of tissue plasminogen activator. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3670–3674. doi: 10.1073/pnas.91.9.3670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kronman C., Chitlaru T., Elhanany E., Velan B., Shafferman A. Hierarchy of post-translational modifications involved in the circulatory longevity of glycoproteins. Demonstration of concerted contributions of glycan sialylation and subunit assembly to the pharmacokinetic behavior of bovine acetylcholinesterase. J Biol Chem. 2000 Sep 22;275(38):29488–29502. doi: 10.1074/jbc.M004298200. [DOI] [PubMed] [Google Scholar]
- Kronman C., Velan B., Gozes Y., Leitner M., Flashner Y., Lazar A., Marcus D., Sery T., Papier Y., Grosfeld H. Production and secretion of high levels of recombinant human acetylcholinesterase in cultured cell lines: microheterogeneity of the catalytic subunit. Gene. 1992 Nov 16;121(2):295–304. doi: 10.1016/0378-1119(92)90134-b. [DOI] [PubMed] [Google Scholar]
- Kronman C., Velan B., Marcus D., Ordentlich A., Reuveny S., Shafferman A. Involvement of oligomerization, N-glycosylation and sialylation in the clearance of cholinesterases from the circulation. Biochem J. 1995 Nov 1;311(Pt 3):959–967. doi: 10.1042/bj3110959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laub P. B., Gallo J. M. NCOMP--a windows-based computer program for noncompartmental analysis of pharmacokinetic data. J Pharm Sci. 1996 Apr;85(4):393–395. doi: 10.1021/js9503744. [DOI] [PubMed] [Google Scholar]
- Lazar A., Reuveny S., Kronman C., Velan B., Shafferman A. Evaluation of anchorage-dependent cell propagation systems for production of human acetylcholinesterase by recombinant 293 cells. Cytotechnology. 1993;13(2):115–123. doi: 10.1007/BF00749938. [DOI] [PubMed] [Google Scholar]
- Li B., Stribley J. A., Ticu A., Xie W., Schopfer L. M., Hammond P., Brimijoin S., Hinrichs S. H., Lockridge O. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J Neurochem. 2000 Sep;75(3):1320–1331. doi: 10.1046/j.1471-4159.2000.751320.x. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Anselmet A., Bon S., Krejci E., Legay C., Morel N., Simon S. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chem Biol Interact. 1999 May 14;119-120:29–42. doi: 10.1016/s0009-2797(99)00011-3. [DOI] [PubMed] [Google Scholar]
- Maxwell D. M., Castro C. A., De La Hoz D. M., Gentry M. K., Gold M. B., Solana R. P., Wolfe A. D., Doctor B. P. Protection of rhesus monkeys against soman and prevention of performance decrement by pretreatment with acetylcholinesterase. Toxicol Appl Pharmacol. 1992 Jul;115(1):44–49. doi: 10.1016/0041-008x(92)90365-y. [DOI] [PubMed] [Google Scholar]
- Mendelson I., Kronman C., Ariel N., Shafferman A., Velan B. Bovine acetylcholinesterase: cloning, expression and characterization. Biochem J. 1998 Aug 15;334(Pt 1):251–259. doi: 10.1042/bj3340251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millard C. B., Lockridge O., Broomfield C. A. Design and expression of organophosphorus acid anhydride hydrolase activity in human butyrylcholinesterase. Biochemistry. 1995 Dec 12;34(49):15925–15933. doi: 10.1021/bi00049a007. [DOI] [PubMed] [Google Scholar]
- Ordentlich A., Barak D., Kronman C., Ariel N., Segall Y., Velan B., Shafferman A. The architecture of human acetylcholinesterase active center probed by interactions with selected organophosphate inhibitors. J Biol Chem. 1996 May 17;271(20):11953–11962. doi: 10.1074/jbc.271.20.11953. [DOI] [PubMed] [Google Scholar]
- Rosenberg Yvonne, Luo Chunyuan, Ashani Yacov, Doctor Bhupendra P., Fischer Randy, Wolfe Gary, Saxena Ashima. Pharmacokinetics and immunologic consequences of exposing macaques to purified homologous butyrylcholinesterase. Life Sci. 2002 Nov 29;72(2):125–134. doi: 10.1016/s0024-3205(02)02203-8. [DOI] [PubMed] [Google Scholar]
- Saxena A., Ashani Y., Raveh L., Stevenson D., Patel T., Doctor B. P. Role of oligosaccharides in the pharmacokinetics of tissue-derived and genetically engineered cholinesterases. Mol Pharmacol. 1998 Jan;53(1):112–122. doi: 10.1124/mol.53.1.112. [DOI] [PubMed] [Google Scholar]
- Saxena A., Raveh L., Ashani Y., Doctor B. P. Structure of glycan moieties responsible for the extended circulatory life time of fetal bovine serum acetylcholinesterase and equine serum butyrylcholinesterase. Biochemistry. 1997 Jun 17;36(24):7481–7489. doi: 10.1021/bi963156d. [DOI] [PubMed] [Google Scholar]
- Shafferman A., Ordentlich A., Barak D., Stein D., Ariel N., Velan B. Aging of phosphylated human acetylcholinesterase: catalytic processes mediated by aromatic and polar residues of the active centre. Biochem J. 1996 Sep 15;318(Pt 3):833–840. doi: 10.1042/bj3180833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon S., Krejci E., Massoulié J. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway. EMBO J. 1998 Nov 2;17(21):6178–6187. doi: 10.1093/emboj/17.21.6178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soreq H., Seidman S. Acetylcholinesterase--new roles for an old actor. Nat Rev Neurosci. 2001 Apr;2(4):294–302. doi: 10.1038/35067589. [DOI] [PubMed] [Google Scholar]
- Velan B., Kronman C., Ordentlich A., Flashner Y., Leitner M., Cohen S., Shafferman A. N-glycosylation of human acetylcholinesterase: effects on activity, stability and biosynthesis. Biochem J. 1993 Dec 15;296(Pt 3):649–656. doi: 10.1042/bj2960649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfe A. D., Rush R. S., Doctor B. P., Koplovitz I., Jones D. Acetylcholinesterase prophylaxis against organophosphate toxicity. Fundam Appl Toxicol. 1987 Aug;9(2):266–270. doi: 10.1016/0272-0590(87)90048-0. [DOI] [PubMed] [Google Scholar]
- van Vlijmen B. J., van Dijk K. W., van't Hof H. B., van Gorp P. J., van der Zee A., van der Boom H., Breuer M. L., Hofker M. H., Havekes L. M. In the absence of endogenous mouse apolipoprotein E, apolipoprotein E*2(Arg-158 --> Cys) transgenic mice develop more severe hyperlipoproteinemia than apolipoprotein E*3-Leiden transgenic mice. J Biol Chem. 1996 Nov 29;271(48):30595–30602. doi: 10.1074/jbc.271.48.30595. [DOI] [PubMed] [Google Scholar]
