Abstract
Non-esterified fatty acid (free fatty acid)-induced activation of the novel PKC (protein kinase C) isoenzymes PKCdelta and PKCtheta correlates with insulin resistance, including decreased insulin-stimulated IRS-1 (insulin receptor substrate-1) tyrosine phosphorylation and phosphoinositide 3-kinase activation, although the mechanism(s) for this resistance is not known. In the present study, we have explored the possibility of a novel PKC, PKCdelta, to modulate directly the ability of the insulin receptor kinase to tyrosine-phosphorylate IRS-1. We have found that expression of either constitutively active PKCdelta or wild-type PKCdelta followed by phorbol ester activation both inhibit insulin-stimulated IRS-1 tyrosine phosphorylation in vivo. Activated PKCdelta was also found to inhibit the IRS-1 tyrosine phosphorylation in vitro by purified insulin receptor using recombinant full-length human IRS-1 and a partial IRS-1-glutathione S-transferase-fusion protein as substrates. This inhibition in vitro was not observed with a non-IRS-1 substrate, indicating that it was not the result of a general decrease in the intrinsic kinase activity of the receptor. Consistent with the hypothesis that PKCdelta acts directly on IRS-1, we show that IRS-1 can be phosphorylated by PKCdelta on at least 18 sites. The importance of three of the PKCdelta phosphorylation sites in IRS-1 was shown in vitro by a 75-80% decrease in the incorporation of phosphate into an IRS-1 triple mutant in which Ser-307, Ser-323 and Ser-574 were replaced by Ala. More importantly, the mutation of these three sites completely abrogated the inhibitory effect of PKCdelta on IRS-1 tyrosine phosphorylation in vitro. These results indicate that PKCdelta modulates the ability of the insulin receptor to tyrosine-phosphorylate IRS-1 by direct phosphorylation of the IRS-1 molecule.
Full Text
The Full Text of this article is available as a PDF (360.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguirre V., Uchida T., Yenush L., Davis R., White M. F. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000 Mar 24;275(12):9047–9054. doi: 10.1074/jbc.275.12.9047. [DOI] [PubMed] [Google Scholar]
- Aguirre Vincent, Werner Eric D., Giraud Jodel, Lee Yong Hee, Shoelson Steve E., White Morris F. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2001 Oct 17;277(2):1531–1537. doi: 10.1074/jbc.M101521200. [DOI] [PubMed] [Google Scholar]
- Beck Alexander, Moeschel Klaus, Deeg Martin, Häring Hans Ulrich, Voelter Wolfgang, Schleicher Erwin D., Lehmann Rainer. Identification of an in vitro insulin receptor substrate-1 phosphorylation site by negative-ion muLC/ES-API-CID-MS hybrid scan technique. J Am Soc Mass Spectrom. 2003 Apr;14(4):401–405. doi: 10.1016/s1044-0305(03)00122-3. [DOI] [PubMed] [Google Scholar]
- Birnbaum M. J. Turning down insulin signaling. J Clin Invest. 2001 Sep;108(5):655–659. doi: 10.1172/JCI13714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boden Guenther, Cheung Peter, Stein T. Peter, Kresge Karen, Mozzoli Maria. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab. 2002 Jul;283(1):E12–E19. doi: 10.1152/ajpendo.00429.2001. [DOI] [PubMed] [Google Scholar]
- Boden Guenther. Interaction between free fatty acids and glucose metabolism. Curr Opin Clin Nutr Metab Care. 2002 Sep;5(5):545–549. doi: 10.1097/00075197-200209000-00014. [DOI] [PubMed] [Google Scholar]
- Chin J. E., Dickens M., Tavare J. M., Roth R. A. Overexpression of protein kinase C isoenzymes alpha, beta I, gamma, and epsilon in cells overexpressing the insulin receptor. Effects on receptor phosphorylation and signaling. J Biol Chem. 1993 Mar 25;268(9):6338–6347. [PubMed] [Google Scholar]
- Clark S. F., Molero J. C., James D. E. Release of insulin receptor substrate proteins from an intracellular complex coincides with the development of insulin resistance. J Biol Chem. 2000 Feb 11;275(6):3819–3826. doi: 10.1074/jbc.275.6.3819. [DOI] [PubMed] [Google Scholar]
- De Fea K., Roth R. A. Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem. 1997 Dec 12;272(50):31400–31406. doi: 10.1074/jbc.272.50.31400. [DOI] [PubMed] [Google Scholar]
- De Fea K., Roth R. A. Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry. 1997 Oct 21;36(42):12939–12947. doi: 10.1021/bi971157f. [DOI] [PubMed] [Google Scholar]
- Eldar-Finkelman H., Krebs E. G. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9660–9664. doi: 10.1073/pnas.94.18.9660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis L., Clauser E., Morgan D. O., Edery M., Roth R. A., Rutter W. J. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell. 1986 Jun 6;45(5):721–732. doi: 10.1016/0092-8674(86)90786-5. [DOI] [PubMed] [Google Scholar]
- Farese Robert V. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab. 2002 Jul;283(1):E1–11. doi: 10.1152/ajpendo.00045.2002. [DOI] [PubMed] [Google Scholar]
- Formisano P., Oriente F., Miele C., Caruso M., Auricchio R., Vigliotta G., Condorelli G., Beguinot F. In NIH-3T3 fibroblasts, insulin receptor interaction with specific protein kinase C isoforms controls receptor intracellular routing. J Biol Chem. 1998 May 22;273(21):13197–13202. doi: 10.1074/jbc.273.21.13197. [DOI] [PubMed] [Google Scholar]
- Garofalo R. S., Rosen O. M. Insulin and insulinlike growth factor 1 (IGF-1) receptors during central nervous system development: expression of two immunologically distinct IGF-1 receptor beta subunits. Mol Cell Biol. 1989 Jul;9(7):2806–2817. doi: 10.1128/mcb.9.7.2806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene Michael W., Garofalo Robert S. Positive and negative regulatory role of insulin receptor substrate 1 and 2 (IRS-1 and IRS-2) serine/threonine phosphorylation. Biochemistry. 2002 Jun 4;41(22):7082–7091. doi: 10.1021/bi015992f. [DOI] [PubMed] [Google Scholar]
- Greene Michael W., Sakaue Hiroshi, Wang Lihong, Alessi Dario R., Roth Richard A. Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by Serine 312 phosphorylation. J Biol Chem. 2003 Jan 1;278(10):8199–8211. doi: 10.1074/jbc.M209153200. [DOI] [PubMed] [Google Scholar]
- Itani S. I., Pories W. J., Macdonald K. G., Dohm G. L. Increased protein kinase C theta in skeletal muscle of diabetic patients. Metabolism. 2001 May;50(5):553–557. doi: 10.1053/meta.2001.22512. [DOI] [PubMed] [Google Scholar]
- Itani Samar I., Ruderman Neil B., Schmieder Frank, Boden Guenther. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002 Jul;51(7):2005–2011. doi: 10.2337/diabetes.51.7.2005. [DOI] [PubMed] [Google Scholar]
- Jakobsen S. N., Hardie D. G., Morrice N., Tornqvist H. E. 5'-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem. 2001 Oct 11;276(50):46912–46916. doi: 10.1074/jbc.C100483200. [DOI] [PubMed] [Google Scholar]
- Johnston Anne M., Pirola Luciano, Van Obberghen Emmanuel. Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett. 2003 Jul 3;546(1):32–36. doi: 10.1016/s0014-5793(03)00438-1. [DOI] [PubMed] [Google Scholar]
- Kellerer M., Mushack J., Seffer E., Mischak H., Ullrich A., Häring H. U. Protein kinase C isoforms alpha, delta and theta require insulin receptor substrate-1 to inhibit the tyrosine kinase activity of the insulin receptor in human kidney embryonic cells (HEK 293 cells). Diabetologia. 1998 Jul;41(7):833–838. doi: 10.1007/s001250050995. [DOI] [PubMed] [Google Scholar]
- Kotani K., Ogawa W., Matsumoto M., Kitamura T., Sakaue H., Hino Y., Miyake K., Sano W., Akimoto K., Ohno S. Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol Cell Biol. 1998 Dec;18(12):6971–6982. doi: 10.1128/mcb.18.12.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kruszynska Yolanta T., Worrall Dorothy Sears, Ofrecio Jachelle, Frias Juan P., Macaraeg Gina, Olefsky Jerrold M. Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged Akt phosphorylation. J Clin Endocrinol Metab. 2002 Jan;87(1):226–234. doi: 10.1210/jcem.87.1.8187. [DOI] [PubMed] [Google Scholar]
- Lam Tony K. T., Yoshii Hidenori, Haber C. Andrew, Bogdanovic Elena, Lam Loretta, Fantus I. George, Giacca Adria. Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Am J Physiol Endocrinol Metab. 2002 Oct;283(4):E682–E691. doi: 10.1152/ajpendo.00038.2002. [DOI] [PubMed] [Google Scholar]
- Lawlor M. A., Alessi D. R. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci. 2001 Aug;114(Pt 16):2903–2910. doi: 10.1242/jcs.114.16.2903. [DOI] [PubMed] [Google Scholar]
- Liu F., Roth R. A. Identification of serines-1035/1037 in the kinase domain of the insulin receptor as protein kinase C alpha mediated phosphorylation sites. FEBS Lett. 1994 Oct 3;352(3):389–392. doi: 10.1016/0014-5793(94)00996-1. [DOI] [PubMed] [Google Scholar]
- Liu Y. F., Paz K., Herschkovitz A., Alt A., Tennenbaum T., Sampson S. R., Ohba M., Kuroki T., LeRoith D., Zick Y. Insulin stimulates PKCzeta -mediated phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated mechanism to negatively regulate the function of IRS proteins. J Biol Chem. 2001 Jan 29;276(17):14459–14465. doi: 10.1074/jbc.M007281200. [DOI] [PubMed] [Google Scholar]
- Mellor H., Parker P. J. The extended protein kinase C superfamily. Biochem J. 1998 Jun 1;332(Pt 2):281–292. doi: 10.1042/bj3320281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obenauer John C., Cantley Lewis C., Yaffe Michael B. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 2003 Jul 1;31(13):3635–3641. doi: 10.1093/nar/gkg584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozes O. N., Akca H., Mayo L. D., Gustin J. A., Maehama T., Dixon J. E., Donner D. B. A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci U S A. 2001 Apr 3;98(8):4640–4645. doi: 10.1073/pnas.051042298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paz K., Hemi R., LeRoith D., Karasik A., Elhanany E., Kanety H., Zick Y. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997 Nov 21;272(47):29911–29918. doi: 10.1074/jbc.272.47.29911. [DOI] [PubMed] [Google Scholar]
- Pederson T. M., Kramer D. L., Rondinone C. M. Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes. 2001 Jan;50(1):24–31. doi: 10.2337/diabetes.50.1.24. [DOI] [PubMed] [Google Scholar]
- Qiao Li-Ya, Zhande Rachel, Jetton Thomas L., Zhou Gaochao, Sun Xiao Jian. In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J Biol Chem. 2002 May 2;277(29):26530–26539. doi: 10.1074/jbc.M201494200. [DOI] [PubMed] [Google Scholar]
- Qu X., Seale J. P., Donnelly R. Tissue and isoform-selective activation of protein kinase C in insulin-resistant obese Zucker rats - effects of feeding. J Endocrinol. 1999 Aug;162(2):207–214. doi: 10.1677/joe.0.1620207. [DOI] [PubMed] [Google Scholar]
- Ravichandran L. V., Esposito D. L., Chen J., Quon M. J. Protein kinase C-zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem. 2000 Nov 3;276(5):3543–3549. doi: 10.1074/jbc.M007231200. [DOI] [PubMed] [Google Scholar]
- Reks S. E., Smith P. H., Messina J. L., Weinstock R. S. Translocation of PKC delta by insulin in a rat hepatoma cell line. Endocrine. 1998 Apr;8(2):161–167. doi: 10.1385/ENDO:8:2:161. [DOI] [PubMed] [Google Scholar]
- Saltiel A. R. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell. 2001 Feb 23;104(4):517–529. doi: 10.1016/s0092-8674(01)00239-2. [DOI] [PubMed] [Google Scholar]
- Shah Pankaj, Basu Ananda, Rizza Robert. Fat-induced liver insulin resistance. Curr Diab Rep. 2003 Jun;3(3):214–218. doi: 10.1007/s11892-003-0066-1. [DOI] [PubMed] [Google Scholar]
- Shepherd P. R., Withers D. J., Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J. 1998 Aug 1;333(Pt 3):471–490. doi: 10.1042/bj3330471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shulman G. I. Cellular mechanisms of insulin resistance in humans. Am J Cardiol. 1999 Jul 8;84(1A):3J–10J. doi: 10.1016/s0002-9149(99)00350-1. [DOI] [PubMed] [Google Scholar]
- Soh J. W., Lee E. H., Prywes R., Weinstein I. B. Novel roles of specific isoforms of protein kinase C in activation of the c-fos serum response element. Mol Cell Biol. 1999 Feb;19(2):1313–1324. doi: 10.1128/mcb.19.2.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steen Hanno, Fernandez Minerva, Ghaffari Saghi, Pandey Akhilesh, Mann Matthias. Phosphotyrosine mapping in Bcr/Abl oncoprotein using phosphotyrosine-specific immonium ion scanning. Mol Cell Proteomics. 2003 Feb 25;2(3):138–145. doi: 10.1074/mcp.M300001-MCP200. [DOI] [PubMed] [Google Scholar]
- Stempka L., Girod A., Müller H. J., Rincke G., Marks F., Gschwendt M., Bossemeyer D. Phosphorylation of protein kinase Cdelta (PKCdelta) at threonine 505 is not a prerequisite for enzymatic activity. Expression of rat PKCdelta and an alanine 505 mutant in bacteria in a functional form. J Biol Chem. 1997 Mar 7;272(10):6805–6811. doi: 10.1074/jbc.272.10.6805. [DOI] [PubMed] [Google Scholar]
- Tanasijevic M. J., Myers M. G., Jr, Thoma R. S., Crimmins D. L., White M. F., Sacks D. B. Phosphorylation of the insulin receptor substrate IRS-1 by casein kinase II. J Biol Chem. 1993 Aug 25;268(24):18157–18166. [PubMed] [Google Scholar]
- Vainshtein I., Kovacina K. S., Roth R. A. The insulin receptor substrate (IRS)-1 pleckstrin homology domain functions in downstream signaling. J Biol Chem. 2001 Jan 5;276(11):8073–8078. doi: 10.1074/jbc.M008436200. [DOI] [PubMed] [Google Scholar]
- White Morris F. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002 Sep;283(3):E413–E422. doi: 10.1152/ajpendo.00514.2001. [DOI] [PubMed] [Google Scholar]
- Yu Chunli, Chen Yan, Cline Gary W., Zhang Dongyan, Zong Haihong, Wang Yanlin, Bergeron Raynald, Kim Jason K., Cushman Samuel W., Cooney Gregory J. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002 Nov 14;277(52):50230–50236. doi: 10.1074/jbc.M200958200. [DOI] [PubMed] [Google Scholar]
- Zick Y. Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol. 2001 Nov;11(11):437–441. doi: 10.1016/s0962-8924(01)02129-8. [DOI] [PubMed] [Google Scholar]