Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):35–44. doi: 10.1042/BJ20031336

New role for leucyl aminopeptidase in glutathione turnover.

Mario Cappiello 1, Alessandra Lazzarotti 1, Francesca Buono 1, Andrea Scaloni 1, Chiara D'Ambrosio 1, Pietro Amodeo 1, Blanca L Méndez 1, Paolo Pelosi 1, Antonella Del Corso 1, Umberto Mura 1
PMCID: PMC1223929  PMID: 14583094

Abstract

A manganese-dependent cysteinyl-glycine hydrolysing activity has been purified to electrophoretic homogeneity from bovine lens. The characterization of the purified enzyme (molecular mass of the native protein, molecular mass of the subunit and extensive primary structure analysis) allowed the unequivocal attribution of the cysteinyl-glycine hydrolysing activity, which is usually associated with alanyl aminopeptidase (EC 3.4.11.2) or membrane-bound dipeptidase (EC 3.4.13.19), to LAP (leucyl aminopeptidase; EC 3.4.11.1). Analysis of the pH dependence of Cys-Gly hydrolysis catalysed by LAP, supported by a molecular modelling approach to the enzyme-substrate conformation, gave insights into the ability of the enzyme to recognize Cys-Gly as a substrate. Due to the effectiveness of LAP in hydrolysing Cys-Gly (K(m)=0.57 mM, kcat=6.0x10(3) min(-1) at pH 7.4 and 25 degrees C) with respect to other dipeptide substrates, a new role for this enzyme in glutathione turnover is proposed.

Full Text

The Full Text of this article is available as a PDF (211.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BINKLEY F., ALEXANDER V., BELL F. E., LEA C. Peptidases and alkaline phosphatases of swine kidney. J Biol Chem. 1957 Oct;228(2):559–567. [PubMed] [Google Scholar]
  2. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cappiello M., Amodeo P., Mendez B. L., Scaloni A., Vilardo P. G., Cecconi I., Dal Monte M., Banditelli S., Talamo F., Micheli V. Modulation of aldose reductase activity through S-thiolation by physiological thiols. Chem Biol Interact. 2001 Jan 30;130-132(1-3):597–608. doi: 10.1016/s0009-2797(00)00286-6. [DOI] [PubMed] [Google Scholar]
  5. Cuypers H. T., van Loon-Klaassen L. A., Egberts W. T., de Jong W. W., Bloemendal H. Sulfhydryl content of bovine eye lens leucine aminopeptidase. Determination of the reactivity of the sulfhydryl groups of the zinc metalloenzyme, of the enzyme activated by Mg2+, Mn2+, and Co2+, and of the metal-free apoenzyme. J Biol Chem. 1982 Jun 25;257(12):7086–7091. [PubMed] [Google Scholar]
  6. Cuypers H. T., van Loon-Klaassen L. A., Egberts W. T., de Jong W. W., Bloemendal H. The primary structure of leucine aminopeptidase from bovine eye lens. J Biol Chem. 1982 Jun 25;257(12):7077–7085. [PubMed] [Google Scholar]
  7. Dominici S., Valentini M., Maellaro E., Del Bello B., Paolicchi A., Lorenzini E., Tongiani R., Comporti M., Pompella A. Redox modulation of cell surface protein thiols in U937 lymphoma cells: the role of gamma-glutamyl transpeptidase-dependent H2O2 production and S-thiolation. Free Radic Biol Med. 1999 Sep;27(5-6):623–635. doi: 10.1016/s0891-5849(99)00111-2. [DOI] [PubMed] [Google Scholar]
  8. Dringen R., Hamprecht B., Bröer S. The peptide transporter PepT2 mediates the uptake of the glutathione precursor CysGly in astroglia-rich primary cultures. J Neurochem. 1998 Jul;71(1):388–393. doi: 10.1046/j.1471-4159.1998.71010388.x. [DOI] [PubMed] [Google Scholar]
  9. Dringen R., Pfeiffer B., Hamprecht B. Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci. 1999 Jan 15;19(2):562–569. doi: 10.1523/JNEUROSCI.19-02-00562.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drozdz R., Parmentier C., Hachad H., Leroy P., Siest G., Wellman M. gamma-Glutamyltransferase dependent generation of reactive oxygen species from a glutathione/transferrin system. Free Radic Biol Med. 1998 Nov 1;25(7):786–792. doi: 10.1016/s0891-5849(98)00127-0. [DOI] [PubMed] [Google Scholar]
  11. Enoiu M., Aberkane H., Salazar J. F., Leroy P., Groffen J., Siest G., Wellman M. Evidence for the pro-oxidant effect of gamma-glutamyltranspeptidase-related enzyme. Free Radic Biol Med. 2000 Nov 1;29(9):825–833. doi: 10.1016/s0891-5849(00)00370-1. [DOI] [PubMed] [Google Scholar]
  12. Gaitonde M. K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J. 1967 Aug;104(2):627–633. doi: 10.1042/bj1040627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giustarini D., Campoccia G., Fanetti G., Rossi R., Giannerini F., Lusini L., Di Simplicio P. Minor thiols cysteine and cysteinylglycine regulate the competition between glutathione and protein SH groups in human platelets subjected to oxidative stress. Arch Biochem Biophys. 2000 Aug 1;380(1):1–10. doi: 10.1006/abbi.2000.1847. [DOI] [PubMed] [Google Scholar]
  14. Glass G. A., Stark A. A. Promotion of glutathione-gamma-glutamyl transpeptidase-dependent lipid peroxidation by copper and ceruloplasmin: the requirement for iron and the effects of antioxidants and antioxidant enzymes. Environ Mol Mutagen. 1997;29(1):73–80. doi: 10.1002/(sici)1098-2280(1997)29:1<73::aid-em10>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  15. Grau E. M., Marathe G. V., Tate S. S. Rapid purification of rat kidney brush borders enriched in gamma-glutamyl transpeptidase. FEBS Lett. 1979 Feb 1;98(1):91–95. doi: 10.1016/0014-5793(79)80159-3. [DOI] [PubMed] [Google Scholar]
  16. Henson H., Frohne M. Crystalline leucine aminopeptidase from lens (alpha-aminoacyl-peptide hydrolase; EC 3.4.11.1). Methods Enzymol. 1976;45:504–520. doi: 10.1016/s0076-6879(76)45045-0. [DOI] [PubMed] [Google Scholar]
  17. Hughey R. P., Rankin B. B., Elce J. S., Curthoys N. P. Specificity of a particulate rat renal peptidase and its localization along with other enzymes of mercapturic acid synthesis. Arch Biochem Biophys. 1978 Mar;186(2):211–217. doi: 10.1016/0003-9861(78)90430-7. [DOI] [PubMed] [Google Scholar]
  18. Jones D. P., Carlson J. L., Mody V. C., Cai J., Lynn M. J., Sternberg P. Redox state of glutathione in human plasma. Free Radic Biol Med. 2000 Feb 15;28(4):625–635. doi: 10.1016/s0891-5849(99)00275-0. [DOI] [PubMed] [Google Scholar]
  19. Jösch Claudio, Klotz Lars-Oliver, Sies Helmut. Identification of cytosolic leucyl aminopeptidase (EC 3.4.11.1) as the major cysteinylglycine-hydrolysing activity in rat liver. Biol Chem. 2003 Feb;384(2):213–218. doi: 10.1515/BC.2003.023. [DOI] [PubMed] [Google Scholar]
  20. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Maellaro E., Dominici S., Del Bello B., Valentini M. A., Pieri L., Perego P., Supino R., Zunino F., Lorenzini E., Paolicchi A. Membrane gamma-glutamyl transpeptidase activity of melanoma cells: effects on cellular H(2)O(2) production, cell surface protein thiol oxidation and NF-kappa B activation status. J Cell Sci. 2000 Aug;113(Pt 15):2671–2678. doi: 10.1242/jcs.113.15.2671. [DOI] [PubMed] [Google Scholar]
  23. OLSON C. K., BINKLEY F. Metabolism of glutathione. III. Enzymatic hydrolysis of cysteinylglycine. J Biol Chem. 1950 Oct;186(2):731–735. [PubMed] [Google Scholar]
  24. Paolicchi A., Minotti G., Tonarelli P., Tongiani R., De Cesare D., Mezzetti A., Dominici S., Comporti M., Pompella A. Gamma-glutamyl transpeptidase-dependent iron reduction and LDL oxidation--a potential mechanism in atherosclerosis. J Investig Med. 1999 Mar;47(3):151–160. [PubMed] [Google Scholar]
  25. Paolicchi A., Tongiani R., Tonarelli P., Comporti M., Pompella A. gamma-Glutamyl transpeptidase-dependent lipid peroxidation in isolated hepatocytes and HepG2 hepatoma cells. Free Radic Biol Med. 1997;22(5):853–860. doi: 10.1016/s0891-5849(96)00422-4. [DOI] [PubMed] [Google Scholar]
  26. Perego P., Paolicchi A., Tongiani R., Pompella A., Tonarelli P., Carenini N., Romanelli S., Zunino F. The cell-specific anti-proliferative effect of reduced glutathione is mediated by gamma-glutamyl transpeptidase-dependent extracellular pro-oxidant reactions. Int J Cancer. 1997 Apr 10;71(2):246–250. doi: 10.1002/(sici)1097-0215(19970410)71:2<246::aid-ijc20>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  27. ROBINSON D. S., BIRNBAUM S. M., GREENSTEIN J. P. Purification and properties of an aminopeptidase from kidney cellular particulates. J Biol Chem. 1953 May;202(1):1–26. [PubMed] [Google Scholar]
  28. Rankin B. B., McIntyre T. M., Curthoys N. P. Brush border membrane hydrolysis of S-benzyl-cysteine-p-nitroanilide, and activity of aminopeptidase M. Biochem Biophys Res Commun. 1980 Oct 16;96(3):991–996. doi: 10.1016/0006-291x(80)90050-9. [DOI] [PubMed] [Google Scholar]
  29. SEMENZA G. Chromatographic purification of cysteinyl-glycinase. Biochim Biophys Acta. 1957 May;24(2):401–413. doi: 10.1016/0006-3002(57)90212-3. [DOI] [PubMed] [Google Scholar]
  30. Stark A. A., Glass G. A. Role of copper and ceruloplasmin in oxidative mutagenesis induced by the glutathione-gamma-glutamyl transpeptidase system and by other thiols. Environ Mol Mutagen. 1997;29(1):63–72. [PubMed] [Google Scholar]
  31. Stark A. A., Russell J. J., Langenbach R., Pagano D. A., Zeiger E., Huberman E. Localization of oxidative damage by a glutathione-gamma-glutamyl transpeptidase system in preneoplastic lesions in sections of livers from carcinogen-treated rats. Carcinogenesis. 1994 Feb;15(2):343–348. doi: 10.1093/carcin/15.2.343. [DOI] [PubMed] [Google Scholar]
  32. Stark A. A., Zeiger E., Pagano D. A. Glutathione metabolism by gamma-glutamyltranspeptidase leads to lipid peroxidation: characterization of the system and relevance to hepatocarcinogenesis. Carcinogenesis. 1993 Feb;14(2):183–189. doi: 10.1093/carcin/14.2.183. [DOI] [PubMed] [Google Scholar]
  33. Stote R. H., Karplus M. Zinc binding in proteins and solution: a simple but accurate nonbonded representation. Proteins. 1995 Sep;23(1):12–31. doi: 10.1002/prot.340230104. [DOI] [PubMed] [Google Scholar]
  34. Sträter N., Lipscomb W. N. Transition state analogue L-leucinephosphonic acid bound to bovine lens leucine aminopeptidase: X-ray structure at 1.65 A resolution in a new crystal form. Biochemistry. 1995 Jul 18;34(28):9200–9210. doi: 10.1021/bi00028a033. [DOI] [PubMed] [Google Scholar]
  35. Sträter N., Lipscomb W. N. Two-metal ion mechanism of bovine lens leucine aminopeptidase: active site solvent structure and binding mode of L-leucinal, a gem-diolate transition state analogue, by X-ray crystallography. Biochemistry. 1995 Nov 14;34(45):14792–14800. doi: 10.1021/bi00045a021. [DOI] [PubMed] [Google Scholar]
  36. Sträter N., Sun L., Kantrowitz E. R., Lipscomb W. N. A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by dizinc leucine aminopeptidase. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11151–11155. doi: 10.1073/pnas.96.20.11151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tate S. S., Meister A. gamma-Glutamyl transpeptidase from kidney. Methods Enzymol. 1985;113:400–419. doi: 10.1016/s0076-6879(85)13053-3. [DOI] [PubMed] [Google Scholar]
  38. Taylor A. Aminopeptidases: structure and function. FASEB J. 1993 Feb 1;7(2):290–298. doi: 10.1096/fasebj.7.2.8440407. [DOI] [PubMed] [Google Scholar]
  39. Vilardo P. G., Scaloni A., Amodeo P., Barsotti C., Cecconi I., Cappiello M., Lopez Mendez B., Rullo R., Dal Monte M., Del Corso A. Thiol/disulfide interconversion in bovine lens aldose reductase induced by intermediates of glutathione turnover. Biochemistry. 2001 Oct 9;40(40):11985–11994. doi: 10.1021/bi0104975. [DOI] [PubMed] [Google Scholar]
  40. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
  41. Zalit I., Glass G. A., Stark A. A. The role of chelators in the catalysis of glutathione-gamma-glutamyl transpeptidase-dependent lipid peroxidation by transition metals. Biochem Mol Biol Int. 1996 Dec;40(6):1123–1133. doi: 10.1080/15216549600201763. [DOI] [PubMed] [Google Scholar]
  42. del Bello B., Paolicchi A., Comporti M., Pompella A., Maellaro E. Hydrogen peroxide produced during gamma-glutamyl transpeptidase activity is involved in prevention of apoptosis and maintainance of proliferation in U937 cells. FASEB J. 1999 Jan;13(1):69–79. doi: 10.1096/fasebj.13.1.69. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES