Abstract
In general, inter-protein electron transfer proceeds via the formation of transient complexes. The initial stage of the interaction between plastocyanin (PCu) and cytochrome f (cyt f ) from plants is mediated by complementary electrostatics. Given the diffuse nature of its acidic patch, parsley PCu is an atypical example of a plant PCu. The interaction of this PCu with turnip cyt f was investigated by stopped-flow kinetics, NMR spectroscopy and protein-docking simulations. We show that, despite the altered acidic patch, parsley PCu is as efficient as spinach PCu in accepting electrons from cyt f, over the physiological range of ionic strength. At high ionic strength, the rate constant for the reaction of cyt f with parsley PCu is twice that of the spinach protein. This difference in reactivity is attributed to variations in the hydrophobic patch of parsley PCu. The results of NMR studies and protein-docking simulations indicate that parsley PCu and its spinach analogue adopt different orientations in their complexes with cyt f.
Full Text
The Full Text of this article is available as a PDF (207.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adman E. T. Copper protein structures. Adv Protein Chem. 1991;42:145–197. doi: 10.1016/s0065-3233(08)60536-7. [DOI] [PubMed] [Google Scholar]
- Bagby S., Driscoll P. C., Harvey T. S., Hill H. A. High-resolution solution structure of reduced parsley plastocyanin. Biochemistry. 1994 May 31;33(21):6611–6622. doi: 10.1021/bi00187a031. [DOI] [PubMed] [Google Scholar]
- Bergkvist A., Ejdebäck M., Ubbink M., Karlsson B. G. Surface interactions in the complex between cytochrome f and the E43Q/D44N and E59K/E60Q plastocyanin double mutants as determined by (1)H-NMR chemical shift analysis. Protein Sci. 2001 Dec;10(12):2623–2626. doi: 10.1110/ps.27101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bogan A. A., Thorn K. S. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998 Jul 3;280(1):1–9. doi: 10.1006/jmbi.1998.1843. [DOI] [PubMed] [Google Scholar]
- Camacho C. J., Kimura S. R., DeLisi C., Vajda S. Kinetics of desolvation-mediated protein-protein binding. Biophys J. 2000 Mar;78(3):1094–1105. doi: 10.1016/S0006-3495(00)76668-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Camacho Carlos J., Gatchell David W. Successful discrimination of protein interactions. Proteins. 2003 Jul 1;52(1):92–97. doi: 10.1002/prot.10394. [DOI] [PubMed] [Google Scholar]
- Canters G. W., Gilardi G. Engineering type 1 copper sites in proteins. FEBS Lett. 1993 Jun 28;325(1-2):39–48. doi: 10.1016/0014-5793(93)81410-2. [DOI] [PubMed] [Google Scholar]
- Comeau Stephen R., Gatchell David W., Vajda Sandor, Camacho Carlos J. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2004 Jan 1;20(1):45–50. doi: 10.1093/bioinformatics/btg371. [DOI] [PubMed] [Google Scholar]
- Crowley P. B., Otting G., Schlarb-Ridley B. G., Canters G. W., Ubbink M. Hydrophobic interactions in a cyanobacterial plastocyanin-cytochrome f complex. J Am Chem Soc. 2001 Oct 31;123(43):10444–10453. doi: 10.1021/ja0112700. [DOI] [PubMed] [Google Scholar]
- Crowley Peter B., Díaz-Quintana Antonio, Molina-Heredia Fernando P., Nieto Pedro, Sutter Martin, Haehnel Wolfgang, De La Rosa Miguel A., Ubbink Marcellus. The interactions of cyanobacterial cytochrome c6 and cytochrome f, characterized by NMR. J Biol Chem. 2002 Sep 27;277(50):48685–48689. doi: 10.1074/jbc.M203983200. [DOI] [PubMed] [Google Scholar]
- Crowley Peter B., Ubbink Marcellus. Close encounters of the transient kind: protein interactions in the photosynthetic redox chain investigated by NMR spectroscopy. Acc Chem Res. 2003 Oct;36(10):723–730. doi: 10.1021/ar0200955. [DOI] [PubMed] [Google Scholar]
- Crowley Peter B., Vintonenko Nadejda, Bullerjahn George S., Ubbink Marcellus. Plastocyanin-cytochrome f interactions: the influence of hydrophobic patch mutations studied by NMR spectroscopy. Biochemistry. 2002 Dec 31;41(52):15698–15705. doi: 10.1021/bi026349b. [DOI] [PubMed] [Google Scholar]
- Dennison Christopher, Lawler Anne T., Kohzuma Takamitsu. Unusual properties of plastocyanin from the fern Dryopteris crassirhizoma. Biochemistry. 2002 Jan 15;41(2):552–560. doi: 10.1021/bi011514t. [DOI] [PubMed] [Google Scholar]
- Ejdebäck M., Bergkvist A., Karlsson B. G., Ubbink M. Side-chain interactions in the plastocyanin-cytochrome f complex. Biochemistry. 2000 May 2;39(17):5022–5027. doi: 10.1021/bi992757c. [DOI] [PubMed] [Google Scholar]
- Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
- Guss J. M., Freeman H. C. Structure of oxidized poplar plastocyanin at 1.6 A resolution. J Mol Biol. 1983 Sep 15;169(2):521–563. doi: 10.1016/s0022-2836(83)80064-3. [DOI] [PubMed] [Google Scholar]
- Hervás M., Navarro J. A., Díaz A., Bottin H., De la Rosa M. A. Laser-flash kinetic analysis of the fast electron transfer from plastocyanin and cytochrome c6 to photosystem I. Experimental evidence on the evolution of the reaction mechanism. Biochemistry. 1995 Sep 12;34(36):11321–11326. doi: 10.1021/bi00036a004. [DOI] [PubMed] [Google Scholar]
- Hope A. B. Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim Biophys Acta. 2000 Jan 3;1456(1):5–26. doi: 10.1016/s0005-2728(99)00101-2. [DOI] [PubMed] [Google Scholar]
- Hunter D. M., McFarlane W., Sykes A. G., Dennison C. Effect of pH on the self-exchange reactivity of the plant plastocyanin from parsley. Inorg Chem. 2001 Jan 15;40(2):354–360. doi: 10.1021/ic000798n. [DOI] [PubMed] [Google Scholar]
- Illerhaus J., Altschmied L., Reichert J., Zak E., Herrmann R. G., Haehnel W. Dynamic interaction of plastocyanin with the cytochrome bf complex. J Biol Chem. 2000 Jun 9;275(23):17590–17595. doi: 10.1074/jbc.275.23.17590. [DOI] [PubMed] [Google Scholar]
- Liang Zhao-Xun, Nocek Judith M., Huang Kai, Hayes Ryan T., Kurnikov Igor V., Beratan David N., Hoffman Brian M. Dynamic docking and electron transfer between Zn-myoglobin and cytochrome b(5). J Am Chem Soc. 2002 Jun 19;124(24):6849–6859. doi: 10.1021/ja0127032. [DOI] [PubMed] [Google Scholar]
- Lo Conte L., Chothia C., Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol. 1999 Feb 5;285(5):2177–2198. doi: 10.1006/jmbi.1998.2439. [DOI] [PubMed] [Google Scholar]
- Mandell J. G., Roberts V. A., Pique M. E., Kotlovyi V., Mitchell J. C., Nelson E., Tsigelny I., Ten Eyck L. F. Protein docking using continuum electrostatics and geometric fit. Protein Eng. 2001 Feb;14(2):105–113. doi: 10.1093/protein/14.2.105. [DOI] [PubMed] [Google Scholar]
- Martinez S. E., Huang D., Ponomarev M., Cramer W. A., Smith J. L. The heme redox center of chloroplast cytochrome f is linked to a buried five-water chain. Protein Sci. 1996 Jun;5(6):1081–1092. doi: 10.1002/pro.5560050610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modi S., Nordling M., Lundberg L. G., Hansson O., Bendall D. S. Reactivity of cytochromes c and f with mutant forms of spinach plastocyanin. Biochim Biophys Acta. 1992 Aug 28;1102(1):85–90. doi: 10.1016/0005-2728(92)90068-d. [DOI] [PubMed] [Google Scholar]
- Qin L., Kostić N. M. Importance of protein rearrangement in the electron-transfer reaction between the physiological partners cytochrome f and plastocyanin. Biochemistry. 1993 Jun 15;32(23):6073–6080. doi: 10.1021/bi00074a019. [DOI] [PubMed] [Google Scholar]
- Ruffle Stuart V., Mustafa Aziz O., Kitmitto Ashraf, Holzenburg Andreas, Ford Robert C. The location of plastocyanin in vascular plant photosystem I. J Biol Chem. 2002 Apr 25;277(28):25692–25696. doi: 10.1074/jbc.M202670200. [DOI] [PubMed] [Google Scholar]
- Sato Katsuko, Kohzuma Takamitsu, Dennison Christopher. Active-site structure and electron-transfer reactivity of plastocyanins. J Am Chem Soc. 2003 Feb 26;125(8):2101–2112. doi: 10.1021/ja021005u. [DOI] [PubMed] [Google Scholar]
- Schlarb-Ridley Beatrix G., Bendall Derek S., Howe Christopher J. Relation between interface properties and kinetics of electron transfer in the interaction of cytochrome f and plastocyanin from plants and the cyanobacterium Phormidium laminosum. Biochemistry. 2003 Apr 15;42(14):4057–4063. doi: 10.1021/bi020675+. [DOI] [PubMed] [Google Scholar]
- Sheinerman F. B., Norel R., Honig B. Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol. 2000 Apr;10(2):153–159. doi: 10.1016/s0959-440x(00)00065-8. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Plewniak F., Thierry J., Poch O. DbClustal: rapid and reliable global multiple alignments of protein sequences detected by database searches. Nucleic Acids Res. 2000 Aug 1;28(15):2919–2926. doi: 10.1093/nar/28.15.2919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ubbink M., Ejdebäck M., Karlsson B. G., Bendall D. S. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure. 1998 Mar 15;6(3):323–335. doi: 10.1016/s0969-2126(98)00035-5. [DOI] [PubMed] [Google Scholar]
- Worrall Jonathan A. R., Reinle Wolfgang, Bernhardt Rita, Ubbink Marcellus. Transient protein interactions studied by NMR spectroscopy: the case of cytochrome C and adrenodoxin. Biochemistry. 2003 Jun 17;42(23):7068–7076. doi: 10.1021/bi0342968. [DOI] [PubMed] [Google Scholar]
- Xue Y., Okvist M., Hansson O., Young S. Crystal structure of spinach plastocyanin at 1.7 A resolution. Protein Sci. 1998 Oct;7(10):2099–2105. doi: 10.1002/pro.5560071006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuiderweg Erik R. P. Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry. 2002 Jan 8;41(1):1–7. doi: 10.1021/bi011870b. [DOI] [PubMed] [Google Scholar]