Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):53–62. doi: 10.1042/BJ20030874

p38 MAP kinase signalling is required for hypertrophic chondrocyte differentiation.

Lee-Anne Stanton 1, Shalev Sabari 1, Arthur V Sampaio 1, T Michael Underhill 1, Frank Beier 1
PMCID: PMC1223932  PMID: 14594450

Abstract

Longitudinal growth of endochondral bones is accomplished through the co-ordinated proliferation and hypertrophic differentiation of growth plate chondrocytes. The molecular mechanisms and signalling cascades controlling these processes are not well understood. To analyse the expression and roles of p38 mitogen-activated protein kinases in this process, we have established a micromass system for the reproducible hypertrophic differentiation of mouse mesenchymal limb bud cells. Our results show that all four mammalian p38 kinase genes are expressed during the chondrogenic programme, as well as their upstream regulators MKK3 (mitogen-activated protein kinase kinase 3) and MKK6. Treatment of micromass cultures with pharmacological inhibitors of p38 results in a marked delay in hypertrophic differentiation in micromass cultures, indicating a requirement for p38 signalling in chondrocyte differentiation. Inhibition of p38 kinase activity leads to reduced and delayed induction of alkaline phosphatase activity and matrix mineralization. In addition, p38 inhibition causes reduced expression of hypertrophic marker genes such as collagen X, matrix metalloproteinase 13 and bone sialoprotein. The function of p38 in hypertrophic differentiation appears to be mediated, at least in part, by the transcription factor myocyte enhancer factor 2C. In summary, we have demonstrated a novel requirement for p38 signalling in hypertrophic differentiation of chondrocytes and identified myocyte enhancer factor 2C as an important regulator of chondrocyte gene expression.

Full Text

The Full Text of this article is available as a PDF (392.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. H., Porras A., Alonso G., Jones M., Vintersten K., Panelli S., Valladares A., Perez L., Klein R., Nebreda A. R. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell. 2000 Jul;6(1):109–116. [PubMed] [Google Scholar]
  2. Aigner T., McKenna L. Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci. 2002 Jan;59(1):5–18. doi: 10.1007/s00018-002-8400-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aigner T., Reichenberger E., Bertling W., Kirsch T., Stöss H., von der Mark K. Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;63(4):205–211. doi: 10.1007/BF02899263. [DOI] [PubMed] [Google Scholar]
  4. Aigner T. Towards a new understanding and classification of chondrogenic neoplasias of the skeleton--biochemistry and cell biology of chondrosarcoma and its variants. Virchows Arch. 2002 May 1;441(3):219–230. doi: 10.1007/s00428-002-0641-x. [DOI] [PubMed] [Google Scholar]
  5. Beier F., Ali Z., Mok D., Taylor A. C., Leask T., Albanese C., Pestell R. G., LuValle P. TGFbeta and PTHrP control chondrocyte proliferation by activating cyclin D1 expression. Mol Biol Cell. 2001 Dec;12(12):3852–3863. doi: 10.1091/mbc.12.12.3852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beier F., Lee R. J., Taylor A. C., Pestell R. G., LuValle P. Identification of the cyclin D1 gene as a target of activating transcription factor 2 in chondrocytes. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1433–1438. doi: 10.1073/pnas.96.4.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beier F., LuValle P. Serum induction of the collagen X promoter requires the Raf/MEK/ERK and p38 pathways. Biochem Biophys Res Commun. 1999 Aug 19;262(1):50–54. doi: 10.1006/bbrc.1999.1178. [DOI] [PubMed] [Google Scholar]
  8. Beier F., Taylor A. C., LuValle P. Activating transcription factor 2 is necessary for maximal activity and serum induction of the cyclin A promoter in chondrocytes. J Biol Chem. 2000 Apr 28;275(17):12948–12953. doi: 10.1074/jbc.275.17.12948. [DOI] [PubMed] [Google Scholar]
  9. Beier F., Vornehm S., Pöschl E., von der Mark K., Lammi M. J. Localization of silencer and enhancer elements in the human type X collagen gene. J Cell Biochem. 1997 Aug 1;66(2):210–218. doi: 10.1002/(sici)1097-4644(19970801)66:2<210::aid-jcb8>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  10. Cancedda R., Descalzi Cancedda F., Castagnola P. Chondrocyte differentiation. Int Rev Cytol. 1995;159:265–358. doi: 10.1016/s0074-7696(08)62109-9. [DOI] [PubMed] [Google Scholar]
  11. Cash D. E., Bock C. B., Schughart K., Linney E., Underhill T. M. Retinoic acid receptor alpha function in vertebrate limb skeletogenesis: a modulator of chondrogenesis. J Cell Biol. 1997 Jan 27;136(2):445–457. doi: 10.1083/jcb.136.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cobb M. H. MAP kinase pathways. Prog Biophys Mol Biol. 1999;71(3-4):479–500. doi: 10.1016/s0079-6107(98)00056-x. [DOI] [PubMed] [Google Scholar]
  13. Cuenda A., Cohen P. Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J Biol Chem. 1999 Feb 12;274(7):4341–4346. doi: 10.1074/jbc.274.7.4341. [DOI] [PubMed] [Google Scholar]
  14. Deng C., Wynshaw-Boris A., Zhou F., Kuo A., Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996 Mar 22;84(6):911–921. doi: 10.1016/s0092-8674(00)81069-7. [DOI] [PubMed] [Google Scholar]
  15. Franzen A., Heinegard D., Solursh M. Evidence for sequential appearance of cartilage matrix proteins in developing mouse limbs and in cultures of mouse mesenchymal cells. Differentiation. 1987;36(3):199–210. doi: 10.1111/j.1432-0436.1987.tb00194.x. [DOI] [PubMed] [Google Scholar]
  16. Gack S., Vallon R., Schmidt J., Grigoriadis A., Tuckermann J., Schenkel J., Weiher H., Wagner E. F., Angel P. Expression of interstitial collagenase during skeletal development of the mouse is restricted to osteoblast-like cells and hypertrophic chondrocytes. Cell Growth Differ. 1995 Jun;6(6):759–767. [PubMed] [Google Scholar]
  17. Galbiati F., Volonte D., Engelman J. A., Scherer P. E., Lisanti M. P. Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J Biol Chem. 1999 Oct 15;274(42):30315–30321. doi: 10.1074/jbc.274.42.30315. [DOI] [PubMed] [Google Scholar]
  18. Ganiatsas S., Kwee L., Fujiwara Y., Perkins A., Ikeda T., Labow M. A., Zon L. I. SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6881–6886. doi: 10.1073/pnas.95.12.6881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guo Jun, Chung Ung-Il, Kondo Hisatomo, Bringhurst F. Richard, Kronenberg Henry M. The PTH/PTHrP receptor can delay chondrocyte hypertrophy in vivo without activating phospholipase C. Dev Cell. 2002 Aug;3(2):183–194. doi: 10.1016/s1534-5807(02)00218-6. [DOI] [PubMed] [Google Scholar]
  20. Han J., Jiang Y., Li Z., Kravchenko V. V., Ulevitch R. J. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 1997 Mar 20;386(6622):296–299. doi: 10.1038/386296a0. [DOI] [PubMed] [Google Scholar]
  21. Harada S., Sampath T. K., Aubin J. E., Rodan G. A. Osteogenic protein-1 up-regulation of the collagen X promoter activity is mediated by a MEF-2-like sequence and requires an adjacent AP-1 sequence. Mol Endocrinol. 1997 Nov;11(12):1832–1845. doi: 10.1210/mend.11.12.0022. [DOI] [PubMed] [Google Scholar]
  22. Hunziker E. B. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc Res Tech. 1994 Aug 15;28(6):505–519. doi: 10.1002/jemt.1070280606. [DOI] [PubMed] [Google Scholar]
  23. Inada M., Yasui T., Nomura S., Miyake S., Deguchi K., Himeno M., Sato M., Yamagiwa H., Kimura T., Yasui N. Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn. 1999 Apr;214(4):279–290. doi: 10.1002/(SICI)1097-0177(199904)214:4<279::AID-AJA1>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  24. Jiménez M. J., Balbín M., Alvarez J., Komori T., Bianco P., Holmbeck K., Birkedal-Hansen H., López J. M., López-Otín C. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J Cell Biol. 2001 Dec 17;155(7):1333–1344. doi: 10.1083/jcb.200106147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Karsdal M. A., Fjording M. S., Foged N. T., Delaissé J. M., Lochter A. Transforming growth factor-beta-induced osteoblast elongation regulates osteoclastic bone resorption through a p38 mitogen-activated protein kinase- and matrix metalloproteinase-dependent pathway. J Biol Chem. 2001 Jul 27;276(42):39350–39358. doi: 10.1074/jbc.M008738200. [DOI] [PubMed] [Google Scholar]
  26. Karsenty G. Genetic control of skeletal development. Novartis Found Symp. 2001;232:6–22. [PubMed] [Google Scholar]
  27. Katagiri T., Yamaguchi A., Komaki M., Abe E., Takahashi N., Ikeda T., Rosen V., Wozney J. M., Fujisawa-Sehara A., Suda T. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol. 1994 Dec;127(6 Pt 1):1755–1766. doi: 10.1083/jcb.127.6.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kielty C. M., Kwan A. P., Holmes D. F., Schor S. L., Grant M. E. Type X collagen, a product of hypertrophic chondrocytes. Biochem J. 1985 Apr 15;227(2):545–554. doi: 10.1042/bj2270545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kim I. S., Otto F., Zabel B., Mundlos S. Regulation of chondrocyte differentiation by Cbfa1. Mech Dev. 1999 Feb;80(2):159–170. doi: 10.1016/s0925-4773(98)00210-x. [DOI] [PubMed] [Google Scholar]
  30. Kozawa O., Tokuda H., Matsuno H., Uematsu T. Involvement of p38 mitogen-activated protein kinase in basic fibroblast growth factor-induced interleukin-6 synthesis in osteoblasts. J Cell Biochem. 1999 Sep 1;74(3):479–485. [PubMed] [Google Scholar]
  31. Kronenberg H. M., Chung U. The parathyroid hormone-related protein and Indian hedgehog feedback loop in the growth plate. Novartis Found Symp. 2001;232:144–157. doi: 10.1002/0470846658.ch10. [DOI] [PubMed] [Google Scholar]
  32. Kronenberg Henry M. Developmental regulation of the growth plate. Nature. 2003 May 15;423(6937):332–336. doi: 10.1038/nature01657. [DOI] [PubMed] [Google Scholar]
  33. Kummer J. L., Rao P. K., Heidenreich K. A. Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem. 1997 Aug 15;272(33):20490–20494. doi: 10.1074/jbc.272.33.20490. [DOI] [PubMed] [Google Scholar]
  34. Lee S. E., Woo K. M., Kim S. Y., Kim H. M., Kwack K., Lee Z. H., Kim H. H. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone. 2002 Jan;30(1):71–77. doi: 10.1016/s8756-3282(01)00657-3. [DOI] [PubMed] [Google Scholar]
  35. Lefebvre V., de Crombrugghe B. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 1998 Mar;16(9):529–540. doi: 10.1016/s0945-053x(98)90065-8. [DOI] [PubMed] [Google Scholar]
  36. Li Xiaotong, Udagawa Nobuyuki, Itoh Kanami, Suda Koji, Murase Yoshiyuki, Nishihara Tatsuji, Suda Tatsuo, Takahashi Naoyuki. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology. 2002 Aug;143(8):3105–3113. doi: 10.1210/endo.143.8.8954. [DOI] [PubMed] [Google Scholar]
  37. Long F., Schipani E., Asahara H., Kronenberg H., Montminy M. The CREB family of activators is required for endochondral bone development. Development. 2001 Feb;128(4):541–550. doi: 10.1242/dev.128.4.541. [DOI] [PubMed] [Google Scholar]
  38. Matsuda N., Morita N., Matsuda K., Watanabe M. Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun. 1998 Aug 19;249(2):350–354. doi: 10.1006/bbrc.1998.9151. [DOI] [PubMed] [Google Scholar]
  39. Mello M. A., Tuan R. S. High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. In Vitro Cell Dev Biol Anim. 1999 May;35(5):262–269. doi: 10.1007/s11626-999-0070-0. [DOI] [PubMed] [Google Scholar]
  40. Morin S., Charron F., Robitaille L., Nemer M. GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 2000 May 2;19(9):2046–2055. doi: 10.1093/emboj/19.9.2046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mundlos S., Olsen B. R. Heritable diseases of the skeleton. Part I: Molecular insights into skeletal development-transcription factors and signaling pathways. FASEB J. 1997 Feb;11(2):125–132. doi: 10.1096/fasebj.11.2.9039954. [DOI] [PubMed] [Google Scholar]
  42. Mundlos S., Olsen B. R. Heritable diseases of the skeleton. Part II: Molecular insights into skeletal development-matrix components and their homeostasis. FASEB J. 1997 Mar;11(4):227–233. [PubMed] [Google Scholar]
  43. Nakamura K., Shirai T., Morishita S., Uchida S., Saeki-Miura K., Makishima F. p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp Cell Res. 1999 Aug 1;250(2):351–363. doi: 10.1006/excr.1999.4535. [DOI] [PubMed] [Google Scholar]
  44. Nebreda A. R., Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci. 2000 Jun;25(6):257–260. doi: 10.1016/s0968-0004(00)01595-4. [DOI] [PubMed] [Google Scholar]
  45. Negishi Y., Kudo A., Obinata A., Kawashima K., Hirano H., Yanai N., Obinata M., Endo H. Multipotency of a bone marrow stromal cell line, TBR31-2, established from ts-SV40 T antigen gene transgenic mice. Biochem Biophys Res Commun. 2000 Feb 16;268(2):450–455. doi: 10.1006/bbrc.2000.2076. [DOI] [PubMed] [Google Scholar]
  46. Nilsson A., Ohlsson C., Isaksson O. G., Lindahl A., Isgaard J. Hormonal regulation of longitudinal bone growth. Eur J Clin Nutr. 1994 Feb;48 (Suppl 1):S150–S160. doi: 10.1007/BF02558817. [DOI] [PubMed] [Google Scholar]
  47. Nishina H., Vaz C., Billia P., Nghiem M., Sasaki T., De la Pompa J. L., Furlonger K., Paige C., Hui C., Fischer K. D. Defective liver formation and liver cell apoptosis in mice lacking the stress signaling kinase SEK1/MKK4. Development. 1999 Feb;126(3):505–516. doi: 10.1242/dev.126.3.505. [DOI] [PubMed] [Google Scholar]
  48. Oh C. D., Chang S. H., Yoon Y. M., Lee S. J., Lee Y. S., Kang S. S., Chun J. S. Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J Biol Chem. 2000 Feb 25;275(8):5613–5619. doi: 10.1074/jbc.275.8.5613. [DOI] [PubMed] [Google Scholar]
  49. Ohlsson C., Isgaard J., Törnell J., Nilsson A., Isaksson O. G., Lindahl A. Endocrine regulation of longitudinal bone growth. Acta Paediatr Suppl. 1993 Sep;82 (Suppl 391):33–41. doi: 10.1111/j.1651-2227.1993.tb12925.x. [DOI] [PubMed] [Google Scholar]
  50. Pearson G., Robinson F., Beers Gibson T., Xu B. E., Karandikar M., Berman K., Cobb M. H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001 Apr;22(2):153–183. doi: 10.1210/edrv.22.2.0428. [DOI] [PubMed] [Google Scholar]
  51. Price J. S., Oyajobi B. O., Russell R. G. The cell biology of bone growth. Eur J Clin Nutr. 1994 Feb;48 (Suppl 1):S131–S149. [PubMed] [Google Scholar]
  52. Raingeaud J., Gupta S., Rogers J. S., Dickens M., Han J., Ulevitch R. J., Davis R. J. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995 Mar 31;270(13):7420–7426. doi: 10.1074/jbc.270.13.7420. [DOI] [PubMed] [Google Scholar]
  53. Reichenberger E., Aigner T., von der Mark K., Stöss H., Bertling W. In situ hybridization studies on the expression of type X collagen in fetal human cartilage. Dev Biol. 1991 Dec;148(2):562–572. doi: 10.1016/0012-1606(91)90274-7. [DOI] [PubMed] [Google Scholar]
  54. Reimold A. M., Grusby M. J., Kosaras B., Fries J. W., Mori R., Maniwa S., Clauss I. M., Collins T., Sidman R. L., Glimcher M. J. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature. 1996 Jan 18;379(6562):262–265. doi: 10.1038/379262a0. [DOI] [PubMed] [Google Scholar]
  55. Sandell L. J., Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001 Jan 22;3(2):107–113. doi: 10.1186/ar148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Segat Daniela, Comai Riccardo, Di Marco Eddi, Strangio Antonella, Cancedda Ranieri, Franzi Adriano T., Tacchetti Carlo. Integrins alpha(6A)beta 1 and alpha(6B)beta 1 promote different stages of chondrogenic cell differentiation. J Biol Chem. 2002 Jun 19;277(35):31612–31622. doi: 10.1074/jbc.M203471200. [DOI] [PubMed] [Google Scholar]
  57. Shimoaka Takashi, Ogasawara Toru, Yonamine Akiko, Chikazu Daichi, Kawano Hirotaka, Nakamura Kozo, Itoh Nobuyuki, Kawaguchi Hiroshi. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. J Biol Chem. 2001 Dec 11;277(9):7493–7500. doi: 10.1074/jbc.M108653200. [DOI] [PubMed] [Google Scholar]
  58. Stanton Lee-Anne, Underhill T. Michael, Beier Frank. MAP kinases in chondrocyte differentiation. Dev Biol. 2003 Nov 15;263(2):165–175. doi: 10.1016/s0012-1606(03)00321-x. [DOI] [PubMed] [Google Scholar]
  59. Stricker Sigmar, Fundele Reinald, Vortkamp Andrea, Mundlos Stefan. Role of Runx genes in chondrocyte differentiation. Dev Biol. 2002 May 1;245(1):95–108. doi: 10.1006/dbio.2002.0640. [DOI] [PubMed] [Google Scholar]
  60. Suzuki A., Palmer G., Bonjour J. P., Caverzasio J. Regulation of alkaline phosphatase activity by p38 MAP kinase in response to activation of Gi protein-coupled receptors by epinephrine in osteoblast-like cells. Endocrinology. 1999 Jul;140(7):3177–3182. doi: 10.1210/endo.140.7.6857. [DOI] [PubMed] [Google Scholar]
  61. Sweeney G., Somwar R., Ramlal T., Volchuk A., Ueyama A., Klip A. An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes. J Biol Chem. 1999 Apr 9;274(15):10071–10078. doi: 10.1074/jbc.274.15.10071. [DOI] [PubMed] [Google Scholar]
  62. Takeda S., Bonnamy J. P., Owen M. J., Ducy P., Karsenty G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 2001 Feb 15;15(4):467–481. doi: 10.1101/gad.845101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Tamura K., Sudo T., Senftleben U., Dadak A. M., Johnson R., Karin M. Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell. 2000 Jul 21;102(2):221–231. doi: 10.1016/s0092-8674(00)00027-1. [DOI] [PubMed] [Google Scholar]
  64. Tanaka Nobuyuki, Kamanaka Masahito, Enslen Hervé, Dong Chen, Wysk Mark, Davis Roger J., Flavell Richard A. Differential involvement of p38 mitogen-activated protein kinase kinases MKK3 and MKK6 in T-cell apoptosis. EMBO Rep. 2002 Jul 15;3(8):785–791. doi: 10.1093/embo-reports/kvf153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Wang Wei, Kirsch Thorsten. Retinoic acid stimulates annexin-mediated growth plate chondrocyte mineralization. J Cell Biol. 2002 Jun 3;157(6):1061–1069. doi: 10.1083/jcb.200203014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Watanabe H., de Caestecker M. P., Yamada Y. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells. J Biol Chem. 2001 Jan 29;276(17):14466–14473. doi: 10.1074/jbc.M005724200. [DOI] [PubMed] [Google Scholar]
  67. Weston A. D., Rosen V., Chandraratna R. A., Underhill T. M. Regulation of skeletal progenitor differentiation by the BMP and retinoid signaling pathways. J Cell Biol. 2000 Feb 21;148(4):679–690. doi: 10.1083/jcb.148.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Weston Andrea D., Chandraratna Roshantha A. S., Torchia Joseph, Underhill T. Michael. Requirement for RAR-mediated gene repression in skeletal progenitor differentiation. J Cell Biol. 2002 Jul 8;158(1):39–51. doi: 10.1083/jcb.200112029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Wu L. N., Ishikawa Y., Genge B. R., Sampath T. K., Wuthier R. E. Effect of osteogenic protein-1 on the development and mineralization of primary cultures of avian growth plate chondrocytes: modulation by retinoic acid. J Cell Biochem. 1997 Dec 15;67(4):498–513. doi: 10.1002/(sici)1097-4644(19971215)67:4<498::aid-jcb8>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  70. Wysk M., Yang D. D., Lu H. T., Flavell R. A., Davis R. J. Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3763–3768. doi: 10.1073/pnas.96.7.3763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Yamaguchi T., Chattopadhyay N., Kifor O., Sanders J. L., Brown E. M. Activation of p42/44 and p38 mitogen-activated protein kinases by extracellular calcium-sensing receptor agonists induces mitogenic responses in the mouse osteoblastic MC3T3-E1 cell line. Biochem Biophys Res Commun. 2000 Dec 20;279(2):363–368. doi: 10.1006/bbrc.2000.3955. [DOI] [PubMed] [Google Scholar]
  72. Yang D., Tournier C., Wysk M., Lu H. T., Xu J., Davis R. J., Flavell R. A. Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3004–3009. doi: 10.1073/pnas.94.7.3004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Yang S. H., Galanis A., Sharrocks A. D. Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol. 1999 Jun;19(6):4028–4038. doi: 10.1128/mcb.19.6.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Yosimichi G., Nakanishi T., Nishida T., Hattori T., Takano-Yamamoto T., Takigawa M. CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem. 2001 Dec;268(23):6058–6065. doi: 10.1046/j.0014-2956.2001.02553.x. [DOI] [PubMed] [Google Scholar]
  75. Zetser A., Gredinger E., Bengal E. p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J Biol Chem. 1999 Feb 19;274(8):5193–5200. doi: 10.1074/jbc.274.8.5193. [DOI] [PubMed] [Google Scholar]
  76. Zhao M., New L., Kravchenko V. V., Kato Y., Gram H., di Padova F., Olson E. N., Ulevitch R. J., Han J. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol. 1999 Jan;19(1):21–30. doi: 10.1128/mcb.19.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Zhen X., Wei L., Wu Q., Zhang Y., Chen Q. Mitogen-activated protein kinase p38 mediates regulation of chondrocyte differentiation by parathyroid hormone. J Biol Chem. 2000 Nov 29;276(7):4879–4885. doi: 10.1074/jbc.M004990200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES