Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):161–168. doi: 10.1042/BJ20030955

AlphaII-spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding.

Björn Rotter 1, Yolande Kroviarski 1, Gaël Nicolas 1, Didier Dhermy 1, Marie-Christine Lecomte 1
PMCID: PMC1223933  PMID: 14599290

Abstract

The spectrin-actin scaffold underlying the lipid bilayer is considered to participate in cell-shape stabilization and in the organization of specialized membrane subdomains. These structures are dynamic and likely to undergo frequent remodelling during changes in cell shape. Proteolysis of spectrin, which occurs during apoptosis, leads to destabilization of the scaffold. It is also one of the major processes involved in membrane remodelling. Spectrins, the main components of the membrane skeleton, are the targets for two important protease systems: m- and micro-calpains (Ca2+-activated proteases) and caspase-3 (activated during apoptosis). In this paper, we show that caspase-2 also targets spectrin in vitro, and we characterize Ca2+/calmodulin-dependent regulation of spectrin cleavage by caspases. Yeast two-hybrid screening reveals that the large isoform (1/L) of procaspase-2 specifically binds to alphaII-spectrin, while the short isoform does not. Like caspase-3, caspase-2 cleaves alphaII-spectrin in vitro at residue Asp-1185. This study emphasizes a role of executioner caspase for caspase-2. We also demonstrated that the executioner caspase-7 but not caspase-6 cleaves spectrin at residue Asp-1185 in vitro. This spectrin cleavage by caspases 2, 3 and 7 is inhibited by the Ca2+-dependent binding of calmodulin to spectrin. In contrast, calmodulin binding enhances spectrin cleavage by calpain at residue Tyr-1176. These results indicate that alphaII-spectrin cleavage is highly influenced by Ca2+ homoeostasis and calmodulin, which therefore represent potential regulators of the stability and the plasticity of the spectrin-based skeleton.

Full Text

The Full Text of this article is available as a PDF (255.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett V., Baines A. J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev. 2001 Jul;81(3):1353–1392. doi: 10.1152/physrev.2001.81.3.1353. [DOI] [PubMed] [Google Scholar]
  2. Berghs S., Aggujaro D., Dirkx R., Jr, Maksimova E., Stabach P., Hermel J. M., Zhang J. P., Philbrick W., Slepnev V., Ort T. betaIV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in the central and peripheral nervous system. J Cell Biol. 2000 Nov 27;151(5):985–1002. doi: 10.1083/jcb.151.5.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown T. L., Patil S., Cianci C. D., Morrow J. S., Howe P. H. Transforming growth factor beta induces caspase 3-independent cleavage of alphaII-spectrin (alpha-fodrin) coincident with apoptosis. J Biol Chem. 1999 Aug 13;274(33):23256–23262. doi: 10.1074/jbc.274.33.23256. [DOI] [PubMed] [Google Scholar]
  4. Canizalez-Roman Adrián, Navarro-García Fernando. Fodrin CaM-binding domain cleavage by Pet from enteroaggregative Escherichia coli leads to actin cytoskeletal disruption. Mol Microbiol. 2003 May;48(4):947–958. doi: 10.1046/j.1365-2958.2003.03492.x. [DOI] [PubMed] [Google Scholar]
  5. Cryns V. L., Bergeron L., Zhu H., Li H., Yuan J. Specific cleavage of alpha-fodrin during Fas- and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1beta-converting enzyme/Ced-3 protease distinct from the poly(ADP-ribose) polymerase protease. J Biol Chem. 1996 Dec 6;271(49):31277–31282. doi: 10.1074/jbc.271.49.31277. [DOI] [PubMed] [Google Scholar]
  6. De Matteis M. A., Morrow J. S. The role of ankyrin and spectrin in membrane transport and domain formation. Curr Opin Cell Biol. 1998 Aug;10(4):542–549. doi: 10.1016/s0955-0674(98)80071-9. [DOI] [PubMed] [Google Scholar]
  7. Dubreuil R. R., Wang P., Dahl S., Lee J., Goldstein L. S. Drosophila beta spectrin functions independently of alpha spectrin to polarize the Na,K ATPase in epithelial cells. J Cell Biol. 2000 May 1;149(3):647–656. doi: 10.1083/jcb.149.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Faddis B. T., Hasbani M. J., Goldberg M. P. Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. J Neurosci. 1997 Feb 1;17(3):951–959. doi: 10.1523/JNEUROSCI.17-03-00951.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fowler V. M., Adam E. J. Spectrin redistributes to the cytosol and is phosphorylated during mitosis in cultured cells. J Cell Biol. 1992 Dec;119(6):1559–1572. doi: 10.1083/jcb.119.6.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gascard P., Mohandas N. New insights into functions of erythroid proteins in nonerythroid cells. Curr Opin Hematol. 2000 Mar;7(2):123–129. doi: 10.1097/00062752-200003000-00009. [DOI] [PubMed] [Google Scholar]
  11. Greidinger E. L., Miller D. K., Yamin T. T., Casciola-Rosen L., Rosen A. Sequential activation of three distinct ICE-like activities in Fas-ligated Jurkat cells. FEBS Lett. 1996 Jul 29;390(3):299–303. doi: 10.1016/0014-5793(96)00678-3. [DOI] [PubMed] [Google Scholar]
  12. Hammarlund M., Davis W. S., Jorgensen E. M. Mutations in beta-spectrin disrupt axon outgrowth and sarcomere structure. J Cell Biol. 2000 May 15;149(4):931–942. doi: 10.1083/jcb.149.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harris A. S., Croall D. E., Morrow J. S. Calmodulin regulates fodrin susceptibility to cleavage by calcium-dependent protease I. J Biol Chem. 1989 Oct 15;264(29):17401–17408. [PubMed] [Google Scholar]
  14. Harris A. S., Morrow J. S. Proteolytic processing of human brain alpha spectrin (fodrin): identification of a hypersensitive site. J Neurosci. 1988 Jul;8(7):2640–2651. doi: 10.1523/JNEUROSCI.08-07-02640.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jänicke R. U., Ng P., Sprengart M. L., Porter A. G. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem. 1998 Jun 19;273(25):15540–15545. doi: 10.1074/jbc.273.25.15540. [DOI] [PubMed] [Google Scholar]
  16. Kamal A., Ying Y., Anderson R. G. Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes. J Cell Biol. 1998 Aug 24;142(4):937–947. doi: 10.1083/jcb.142.4.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Komada Masayuki, Soriano Philippe. [Beta]IV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J Cell Biol. 2002 Jan 21;156(2):337–348. doi: 10.1083/jcb.200110003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kruidering M., Schouten T., Evan G. I., Vreugdenhil E. Caspase-mediated cleavage of the Ca2+/calmodulin-dependent protein kinase-like kinase facilitates neuronal apoptosis. J Biol Chem. 2001 Jul 30;276(42):38417–38425. doi: 10.1074/jbc.M103471200. [DOI] [PubMed] [Google Scholar]
  19. Lee A., Morrow J. S., Fowler V. M. Caspase remodeling of the spectrin membrane skeleton during lens development and aging. J Biol Chem. 2001 Mar 8;276(23):20735–20742. doi: 10.1074/jbc.M009723200. [DOI] [PubMed] [Google Scholar]
  20. Mancini M., Machamer C. E., Roy S., Nicholson D. W., Thornberry N. A., Casciola-Rosen L. A., Rosen A. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol. 2000 May 1;149(3):603–612. doi: 10.1083/jcb.149.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martin S. J., O'Brien G. A., Nishioka W. K., McGahon A. J., Mahboubi A., Saido T. C., Green D. R. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem. 1995 Mar 24;270(12):6425–6428. doi: 10.1074/jbc.270.12.6425. [DOI] [PubMed] [Google Scholar]
  22. McMahon L. W., Walsh C. E., Lambert M. W. Human alpha spectrin II and the Fanconi anemia proteins FANCA and FANCC interact to form a nuclear complex. J Biol Chem. 1999 Nov 12;274(46):32904–32908. doi: 10.1074/jbc.274.46.32904. [DOI] [PubMed] [Google Scholar]
  23. Moorthy S., Chen L., Bennett V. Caenorhabditis elegans beta-G spectrin is dispensable for establishment of epithelial polarity, but essential for muscular and neuronal function. J Cell Biol. 2000 May 15;149(4):915–930. doi: 10.1083/jcb.149.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mukerjee N., McGinnis K. M., Park Y. H., Gnegy M. E., Wang K. K. Caspase-mediated proteolytic activation of calcineurin in thapsigargin-mediated apoptosis in SH-SY5Y neuroblastoma cells. Arch Biochem Biophys. 2000 Jul 15;379(2):337–343. doi: 10.1006/abbi.2000.1889. [DOI] [PubMed] [Google Scholar]
  25. Nath R., Raser K. J., Stafford D., Hajimohammadreza I., Posner A., Allen H., Talanian R. V., Yuen P., Gilbertsen R. B., Wang K. K. Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J. 1996 Nov 1;319(Pt 3):683–690. doi: 10.1042/bj3190683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nedrelow Jonathan H., Cianci Carol D., Morrow Jon S. c-Src binds alpha II spectrin's Src homology 3 (SH3) domain and blocks calpain susceptibility by phosphorylating Tyr1176. J Biol Chem. 2002 Nov 20;278(9):7735–7741. doi: 10.1074/jbc.M210988200. [DOI] [PubMed] [Google Scholar]
  27. Nicolas Gaël, Fournier Catherine M., Galand Colette, Malbert-Colas Laurence, Bournier Odile, Kroviarski Yolande, Bourgeois Monique, Camonis Jacques H., Dhermy Didier, Grandchamp Bernard. Tyrosine phosphorylation regulates alpha II spectrin cleavage by calpain. Mol Cell Biol. 2002 May;22(10):3527–3536. doi: 10.1128/MCB.22.10.3527-3536.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Parkinson N. J., Olsson C. L., Hallows J. L., McKee-Johnson J., Keogh B. P., Noben-Trauth K., Kujawa S. G., Tempel B. L. Mutant beta-spectrin 4 causes auditory and motor neuropathies in quivering mice. Nat Genet. 2001 Sep;29(1):61–65. doi: 10.1038/ng710. [DOI] [PubMed] [Google Scholar]
  29. Paroni G., Henderson C., Schneider C., Brancolini C. Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem. 2001 Mar 16;276(24):21907–21915. doi: 10.1074/jbc.M011565200. [DOI] [PubMed] [Google Scholar]
  30. Pászty Katalin, Verma Anil K., Padányi Rita, Filoteo Adelaida G., Penniston John T., Enyedi Agnes. Plasma membrane Ca2+ATPase isoform 4b is cleaved and activated by caspase-3 during the early phase of apoptosis. J Biol Chem. 2001 Dec 20;277(9):6822–6829. doi: 10.1074/jbc.M109548200. [DOI] [PubMed] [Google Scholar]
  31. Reimertz C., Kögel D., Lankiewicz S., Poppe M., Prehn J. H. Ca(2+)-induced inhibition of apoptosis in human SH-SY5Y neuroblastoma cells: degradation of apoptotic protease activating factor-1 (APAF-1). J Neurochem. 2001 Sep;78(6):1256–1266. doi: 10.1046/j.1471-4159.2001.00503.x. [DOI] [PubMed] [Google Scholar]
  32. Sihag R. K., Shea T. B., Wang F. S. Spectrin-actin interaction is required for neurite extension in NB 2a/dl neuroblastoma cells. J Neurosci Res. 1996 Jun 1;44(5):430–437. doi: 10.1002/(SICI)1097-4547(19960601)44:5<430::AID-JNR3>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  33. Spira Micha E., Oren Ruthi, Dormann Ada, Gitler Daniel. Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons. J Comp Neurol. 2003 Mar 10;457(3):293–312. doi: 10.1002/cne.10569. [DOI] [PubMed] [Google Scholar]
  34. Stankewich M. C., Tse W. T., Peters L. L., Ch'ng Y., John K. M., Stabach P. R., Devarajan P., Morrow J. S., Lux S. E. A widely expressed betaIII spectrin associated with Golgi and cytoplasmic vesicles. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14158–14163. doi: 10.1073/pnas.95.24.14158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Takeda S., Yamazaki H., Seog D. H., Kanai Y., Terada S., Hirokawa N. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J Cell Biol. 2000 Mar 20;148(6):1255–1265. doi: 10.1083/jcb.148.6.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Troy C. M., Shelanski M. L. Caspase-2 redux. Cell Death Differ. 2003 Jan;10(1):101–107. doi: 10.1038/sj.cdd.4401175. [DOI] [PubMed] [Google Scholar]
  37. Vanderklish P. W., Krushel L. A., Holst B. H., Gally J. A., Crossin K. L., Edelman G. M. Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2253–2258. doi: 10.1073/pnas.040565597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang K. K., Posmantur R., Nath R., McGinnis K., Whitton M., Talanian R. V., Glantz S. B., Morrow J. S. Simultaneous degradation of alphaII- and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem. 1998 Aug 28;273(35):22490–22497. doi: 10.1074/jbc.273.35.22490. [DOI] [PubMed] [Google Scholar]
  39. Wang L., Miura M., Bergeron L., Zhu H., Yuan J. Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell. 1994 Sep 9;78(5):739–750. doi: 10.1016/s0092-8674(94)90422-7. [DOI] [PubMed] [Google Scholar]
  40. Wang Wei, Xu Jinping, Kirsch Thorsten. Annexin-mediated Ca2+ influx regulates growth plate chondrocyte maturation and apoptosis. J Biol Chem. 2002 Nov 22;278(6):3762–3769. doi: 10.1074/jbc.M208868200. [DOI] [PubMed] [Google Scholar]
  41. Williams S. T., Smith A. N., Cianci C. D., Morrow J. S., Brown T. L. Identification of the primary caspase 3 cleavage site in alpha II-spectrin during apoptosis. Apoptosis. 2003 Aug;8(4):353–361. doi: 10.1023/a:1024168901003. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES