Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):201–206. doi: 10.1042/BJ20031288

Analysis of the membrane topology for transmembrane domains 7-12 of the human reduced folate carrier by scanning cysteine accessibility methods.

Wei Cao 1, Larry H Matherly 1
PMCID: PMC1223934  PMID: 14602046

Abstract

The hRFC (human reduced folate carrier) is the major membrane transporter for both reduced folates and antifolates in human tissues and tumours. The primary amino acid sequence of hRFC predicts a membrane topology involving 12 TMDs (transmembrane domains) with cytosolic oriented N- and C-termini, and a large internal loop connecting TMDs 6 and 7. Previous studies using haemagglutinin epitope insertion and scanning glycosylation mutagenesis methods verified portions of the predicted topology model, including TMDs 1-8 and the N- and C-termini of hRFC. However, the topology structure for TMDs 9-12 remains controversial. To further determine the membrane topology of the hRFC protein, single cysteine residues were introduced into the predicted extracellular or cytoplasmic loops of a fully functional cysteine-less hRFC expressed in transport impaired MtxRIIOua(R)2-4 Chinese hamster ovary cells. The membrane orientations of the substituted cysteines were determined by treatments with the thiol reagents 3-(N-maleimidylpropionyl)-biocytin (biotin maleimide) and 4-acetamido-4'maleimidylstilbene-2,2'-disulphonic acid (stilbenedisulphonate maleimide; SM) or N-ethylmaleimide, combined with the cell-permeabilizing reagent SLO (streptolysin O). We found that cysteine residues placed in the predicted extracellular loops between TMDs 7 and 8 (position 301), 9 and 10 (360), and 11 and 12 (429) could be biotinylated with 200 microM biotin maleimide, and labelling could be blocked with SM. However, biotinylation of cysteines placed in the predicted intracellular loops between TMDs 8 and 9 (position 332) and TMDs 10 and 11 (position 388) was only detected after cell permeabilization with SLO and was abolished by pre-treatment with N -ethylmaleimide. These results strongly support a 12-TMD topology structure for the hRFC protein.

Full Text

The Full Text of this article is available as a PDF (153.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhakdi S., Weller U., Walev I., Martin E., Jonas D., Palmer M. A guide to the use of pore-forming toxins for controlled permeabilization of cell membranes. Med Microbiol Immunol. 1993 Sep;182(4):167–175. doi: 10.1007/BF00219946. [DOI] [PubMed] [Google Scholar]
  2. Cao Wei, Matherly Larry H. Characterization of a cysteine-less human reduced folate carrier: localization of a substrate-binding domain by cysteine-scanning mutagenesis and cysteine accessibility methods. Biochem J. 2003 Aug 15;374(Pt 1):27–36. doi: 10.1042/BJ20030301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark S. F., Martin S., Carozzi A. J., Hill M. M., James D. E. Intracellular localization of phosphatidylinositide 3-kinase and insulin receptor substrate-1 in adipocytes: potential involvement of a membrane skeleton. J Cell Biol. 1998 Mar 9;140(5):1211–1225. doi: 10.1083/jcb.140.5.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ferguson P. L., Flintoff W. F. Topological and functional analysis of the human reduced folate carrier by hemagglutinin epitope insertion. J Biol Chem. 1999 Jun 4;274(23):16269–16278. doi: 10.1074/jbc.274.23.16269. [DOI] [PubMed] [Google Scholar]
  5. Flintoff W. F., Davidson S. V., Siminovitch L. Isolation and partial characterization of three methotrexate-resistant phenotypes from Chinese hamster ovary cells. Somatic Cell Genet. 1976 May;2(3):245–261. doi: 10.1007/BF01538963. [DOI] [PubMed] [Google Scholar]
  6. Flintoff Wayne F., Williams Frederick M. R., Sadlish Heather. The region between transmembrane domains 1 and 2 of the reduced folate carrier forms part of the substrate-binding pocket. J Biol Chem. 2003 Aug 8;278(42):40867–40876. doi: 10.1074/jbc.M302102200. [DOI] [PubMed] [Google Scholar]
  7. Fry D. W., Yalowich J. C., Goldman I. D. Rapid formation of poly-gamma-glutamyl derivatives of methotrexate and their association with dihydrofolate reductase as assessed by high pressure liquid chromatography in the Ehrlich ascites tumor cell in vitro. J Biol Chem. 1982 Feb 25;257(4):1890–1896. [PubMed] [Google Scholar]
  8. Goldman I. D., Matherly L. H. The cellular pharmacology of methotrexate. Pharmacol Ther. 1985;28(1):77–102. doi: 10.1016/0163-7258(85)90083-x. [DOI] [PubMed] [Google Scholar]
  9. Goldman I. David, Zhao Rongbao. Molecular, biochemical, and cellular pharmacology of pemetrexed. Semin Oncol. 2002 Dec;29(6 Suppl 18):3–17. doi: 10.1053/sonc.2002.37461. [DOI] [PubMed] [Google Scholar]
  10. Gong M., Yess J., Connolly T., Ivy S. P., Ohnuma T., Cowan K. H., Moscow J. A. Molecular mechanism of antifolate transport-deficiency in a methotrexate-resistant MOLT-3 human leukemia cell line. Blood. 1997 Apr 1;89(7):2494–2499. [PubMed] [Google Scholar]
  11. Gorlick R., Goker E., Trippett T., Steinherz P., Elisseyeff Y., Mazumdar M., Flintoff W. F., Bertino J. R. Defective transport is a common mechanism of acquired methotrexate resistance in acute lymphocytic leukemia and is associated with decreased reduced folate carrier expression. Blood. 1997 Feb 1;89(3):1013–1018. [PubMed] [Google Scholar]
  12. Grunewald M., Bendahan A., Kanner B. I. Biotinylation of single cysteine mutants of the glutamate transporter GLT-1 from rat brain reveals its unusual topology. Neuron. 1998 Sep;21(3):623–632. doi: 10.1016/s0896-6273(00)80572-3. [DOI] [PubMed] [Google Scholar]
  13. Guo W., Healey J. H., Meyers P. A., Ladanyi M., Huvos A. G., Bertino J. R., Gorlick R. Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res. 1999 Mar;5(3):621–627. [PubMed] [Google Scholar]
  14. Jansen G., Mauritz R., Drori S., Sprecher H., Kathmann I., Bunni M., Priest D. G., Noordhuis P., Schornagel J. H., Pinedo H. M. A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. J Biol Chem. 1998 Nov 13;273(46):30189–30198. doi: 10.1074/jbc.273.46.30189. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Liu Xiang Y., Matherly Larry H. Analysis of membrane topology of the human reduced folate carrier protein by hemagglutinin epitope insertion and scanning glycosylation insertion mutagenesis. Biochim Biophys Acta. 2002 Aug 31;1564(2):333–342. doi: 10.1016/s0005-2736(02)00467-4. [DOI] [PubMed] [Google Scholar]
  18. Loo T. W., Clarke D. M. Membrane topology of a cysteine-less mutant of human P-glycoprotein. J Biol Chem. 1995 Jan 13;270(2):843–848. doi: 10.1074/jbc.270.2.843. [DOI] [PubMed] [Google Scholar]
  19. Matherly L. H., Czajkowski C. A., Angeles S. M. Identification of a highly glycosylated methotrexate membrane carrier in K562 human erythroleukemia cells up-regulated for tetrahydrofolate cofactor and methotrexate transport. Cancer Res. 1991 Jul 1;51(13):3420–3426. [PubMed] [Google Scholar]
  20. Matherly Larry H., Goldman David I. Membrane transport of folates. Vitam Horm. 2003;66:403–456. doi: 10.1016/s0083-6729(03)01012-4. [DOI] [PubMed] [Google Scholar]
  21. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  22. Moscow J. A., Gong M., He R., Sgagias M. K., Dixon K. H., Anzick S. L., Meltzer P. S., Cowan K. H. Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res. 1995 Sep 1;55(17):3790–3794. [PubMed] [Google Scholar]
  23. Popov M., Tam L. Y., Li J., Reithmeier R. A. Mapping the ends of transmembrane segments in a polytopic membrane protein. Scanning N-glycosylation mutagenesis of extracytosolic loops in the anion exchanger, band 3. J Biol Chem. 1997 Jul 18;272(29):18325–18332. doi: 10.1074/jbc.272.29.18325. [DOI] [PubMed] [Google Scholar]
  24. Prasad P. D., Ramamoorthy S., Leibach F. H., Ganapathy V. Molecular cloning of the human placental folate transporter. Biochem Biophys Res Commun. 1995 Jan 17;206(2):681–687. doi: 10.1006/bbrc.1995.1096. [DOI] [PubMed] [Google Scholar]
  25. Sadlish H., Murray R. C., Williams F. M., Flintoff W. F. Mutations in the reduced-folate carrier affect protein localization and stability. Biochem J. 2000 Mar 1;346(Pt 2):509–518. [PMC free article] [PubMed] [Google Scholar]
  26. Schuetz J. D., Matherly L. H., Westin E. H., Goldman I. D. Evidence for a functional defect in the translocation of the methotrexate transport carrier in a methotrexate-resistant murine L1210 leukemia cell line. J Biol Chem. 1988 Jul 15;263(20):9840–9847. [PubMed] [Google Scholar]
  27. Sirotnak F. M., Moccio D. M., Kelleher L. E., Goutas L. J. Relative frequency and kinetic properties of transport-defective phenotypes among methotrexate-resistant L1210 clonal cell lines derived in vivo. Cancer Res. 1981 Nov;41(11 Pt 1):4447–4452. [PubMed] [Google Scholar]
  28. Sirotnak F. M., Tolner B. Carrier-mediated membrane transport of folates in mammalian cells. Annu Rev Nutr. 1999;19:91–122. doi: 10.1146/annurev.nutr.19.1.91. [DOI] [PubMed] [Google Scholar]
  29. Williams F. M., Flintoff W. F. Isolation of a human cDNA that complements a mutant hamster cell defective in methotrexate uptake. J Biol Chem. 1995 Feb 17;270(7):2987–2992. doi: 10.1074/jbc.270.7.2987. [DOI] [PubMed] [Google Scholar]
  30. Wong S. C., McQuade R., Proefke S. A., Bhushan A., Matherly L. H. Human K562 transfectants expressing high levels of reduced folate carrier but exhibiting low transport activity. Biochem Pharmacol. 1997 Jan 24;53(2):199–206. doi: 10.1016/s0006-2952(96)00710-1. [DOI] [PubMed] [Google Scholar]
  31. Wong S. C., Proefke S. A., Bhushan A., Matherly L. H. Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. J Biol Chem. 1995 Jul 21;270(29):17468–17475. doi: 10.1074/jbc.270.29.17468. [DOI] [PubMed] [Google Scholar]
  32. Wong S. C., Zhang L., Proefke S. A., Matherly L. H. Effects of the loss of capacity for N-glycosylation on the transport activity and cellular localization of the human reduced folate carrier. Biochim Biophys Acta. 1998 Oct 15;1375(1-2):6–12. doi: 10.1016/s0005-2736(98)00118-7. [DOI] [PubMed] [Google Scholar]
  33. Wong S. C., Zhang L., Witt T. L., Proefke S. A., Bhushan A., Matherly L. H. Impaired membrane transport in methotrexate-resistant CCRF-CEM cells involves early translation termination and increased turnover of a mutant reduced folate carrier. J Biol Chem. 1999 Apr 9;274(15):10388–10394. doi: 10.1074/jbc.274.15.10388. [DOI] [PubMed] [Google Scholar]
  34. Zhang L., Taub J. W., Williamson M., Wong S. C., Hukku B., Pullen J., Ravindranath Y., Matherly L. H. Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: relationship to immunophenotype and ploidy. Clin Cancer Res. 1998 Sep;4(9):2169–2177. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES