Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):275–280. doi: 10.1042/BJ20031284

Production and characterization of reduced NAADP (nicotinic acid-adenine dinucleotide phosphate).

Richard A Billington 1, Jan W Thuring 1, Stuart J Conway 1, Len Packman 1, Andrew B Holmes 1, Armando A Genazzani 1
PMCID: PMC1223936  PMID: 14606955

Abstract

The pyridine nucleotide NAADP (nicotinic acid-adenine dinucleotide phosphate) has been shown to act as a Ca2+-releasing intracellular messenger in a wide variety of systems from invertebrates to mammals and has been implicated in a number of cellular processes. NAADP is structurally very similar to its precursor, the endogenous coenzyme NADP and while much is known about the reduced form of NADP, NADPH, it is not known whether NAADP can also exist in a reduced state. Here we report that NAADP can be reduced to NAADPH by endogenous cellular enzymes and that NAADPH is functionally inert at the NAADP receptor. These data suggest that NAADPH could represent a mechanism for rapidly inactivating NAADP in cells.

Full Text

The Full Text of this article is available as a PDF (124.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarhus R., Dickey D. M., Graeff R. M., Gee K. R., Walseth T. F., Lee H. C. Activation and inactivation of Ca2+ release by NAADP+. J Biol Chem. 1996 Apr 12;271(15):8513–8516. doi: 10.1074/jbc.271.15.8513. [DOI] [PubMed] [Google Scholar]
  2. Ayala A., Fabregat I., Machado A. The role of NADPH in the regulation of glucose-6-phosphate and 6-phosphogluconate dehydrogenases in rat adipose tissue. Mol Cell Biochem. 1991 Jun 26;105(1):1–5. doi: 10.1007/BF00230368. [DOI] [PubMed] [Google Scholar]
  3. Berridge Georgina, Cramer Rainer, Galione Antony, Patel Sandip. Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid-adenine dinucleotide phosphate via a 2'-specific Ca2+-dependent phosphatase. Biochem J. 2002 Jul 1;365(Pt 1):295–301. doi: 10.1042/BJ20020180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Billington R. A., Genazzani A. A. Characterization of NAADP(+) binding in sea urchin eggs. Biochem Biophys Res Commun. 2000 Sep 16;276(1):112–116. doi: 10.1006/bbrc.2000.3444. [DOI] [PubMed] [Google Scholar]
  5. Billington Richard A., Ho Andrew, Genazzani Armando A. Nicotinic acid adenine dinucleotide phosphate (NAADP) is present at micromolar concentrations in sea urchin spermatozoa. J Physiol. 2002 Oct 1;544(Pt 1):107–112. doi: 10.1113/jphysiol.2002.030098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cancela J. M., Churchill G. C., Galione A. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature. 1999 Mar 4;398(6722):74–76. doi: 10.1038/18032. [DOI] [PubMed] [Google Scholar]
  7. Cancela J. M., Gerasimenko O. V., Gerasimenko J. V., Tepikin A. V., Petersen O. H. Two different but converging messenger pathways to intracellular Ca(2+) release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate. EMBO J. 2000 Jun 1;19(11):2549–2557. doi: 10.1093/emboj/19.11.2549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cancela Jose M., Van Coppenolle Fabien, Galione Antony, Tepikin Alexei V., Petersen Ole H. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO J. 2002 Mar 1;21(5):909–919. doi: 10.1093/emboj/21.5.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Churchill Grant C., O'Neill John S., Masgrau Roser, Patel Sandip, Thomas Justyn M., Genazzani Armando A., Galione Antony. Sperm deliver a new second messenger: NAADP. Curr Biol. 2003 Jan 21;13(2):125–128. doi: 10.1016/s0960-9822(03)00002-2. [DOI] [PubMed] [Google Scholar]
  10. Churchill Grant C., Okada Yuhei, Thomas Justyn M., Genazzani Armando A., Patel Sandip, Galione Antony. NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell. 2002 Nov 27;111(5):703–708. doi: 10.1016/s0092-8674(02)01082-6. [DOI] [PubMed] [Google Scholar]
  11. Dargie P. J., Agre M. C., Lee H. C. Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol trisphosphate. Cell Regul. 1990 Feb;1(3):279–290. doi: 10.1091/mbc.1.3.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Epel D., Patton C., Wallace R. W., Cheung W. Y. Calmodulin activates NAD kinase of sea urchin eggs: an early event of fertilization. Cell. 1981 Feb;23(2):543–549. doi: 10.1016/0092-8674(81)90150-1. [DOI] [PubMed] [Google Scholar]
  13. Genazzani A. A., Empson R. M., Galione A. Unique inactivation properties of NAADP-sensitive Ca2+ release. J Biol Chem. 1996 May 17;271(20):11599–11602. doi: 10.1074/jbc.271.20.11599. [DOI] [PubMed] [Google Scholar]
  14. Genazzani A. A., Galione A. Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem J. 1996 May 1;315(Pt 3):721–725. doi: 10.1042/bj3150721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Genazzani Armando A., Billington Richard A. NAADP: an atypical Ca2+-release messenger? Trends Pharmacol Sci. 2002 Apr;23(4):165–167. doi: 10.1016/s0165-6147(00)01990-8. [DOI] [PubMed] [Google Scholar]
  16. Himpel S., Panzer P., Eirmbter K., Czajkowska H., Sayed M., Packman L. C., Blundell T., Kentrup H., Grötzinger J., Joost H. G. Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. Biochem J. 2001 Nov 1;359(Pt 3):497–505. doi: 10.1042/0264-6021:3590497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hohenegger Martin, Suko Josef, Gscheidlinger Regina, Drobny Helmut, Zidar Andreas. Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor. Biochem J. 2002 Oct 15;367(Pt 2):423–431. doi: 10.1042/BJ20020584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  19. Lee H. C., Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem. 1995 Feb 3;270(5):2152–2157. doi: 10.1074/jbc.270.5.2152. [DOI] [PubMed] [Google Scholar]
  20. Lee H. C., Aarhus R. Functional visualization of the separate but interacting calcium stores sensitive to NAADP and cyclic ADP-ribose. J Cell Sci. 2000 Dec;113(Pt 24):4413–4420. doi: 10.1242/jcs.113.24.4413. [DOI] [PubMed] [Google Scholar]
  21. Lee H. C. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol. 2001;41:317–345. doi: 10.1146/annurev.pharmtox.41.1.317. [DOI] [PubMed] [Google Scholar]
  22. Lim D., Kyozuka K., Gragnaniello G., Carafoli E., Santella L. NAADP+ initiates the Ca2+ response during fertilization of starfish oocytes. FASEB J. 2001 Oct;15(12):2257–2267. doi: 10.1096/fj.01-0157com. [DOI] [PubMed] [Google Scholar]
  23. Merker Marilyn P., Bongard Robert D., Kettenhofen Nicholas J., Okamoto Yoshiyuki, Dawson Christopher A. Intracellular redox status affects transplasma membrane electron transport in pulmonary arterial endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2002 Jan;282(1):L36–L43. doi: 10.1152/ajplung.00283.2001. [DOI] [PubMed] [Google Scholar]
  24. Patel S., Churchill G. C., Galione A. Coordination of Ca2+ signalling by NAADP. Trends Biochem Sci. 2001 Aug;26(8):482–489. doi: 10.1016/s0968-0004(01)01896-5. [DOI] [PubMed] [Google Scholar]
  25. Schomer Miller B., Epel D. The roles of changes in NADPH and pH during fertilization and artificial activation of the sea urchin egg. Dev Biol. 1999 Dec 1;216(1):394–405. doi: 10.1006/dbio.1999.9513. [DOI] [PubMed] [Google Scholar]
  26. Schomer B., Epel D. Redox changes during fertilization and maturation of marine invertebrate eggs. Dev Biol. 1998 Nov 1;203(1):1–11. doi: 10.1006/dbio.1998.9044. [DOI] [PubMed] [Google Scholar]
  27. Schumacker Paul T. Angiotensin II signaling in the brain: compartmentalization of redox signaling? Circ Res. 2002 Nov 29;91(11):982–984. doi: 10.1161/01.res.0000045655.34731.b6. [DOI] [PubMed] [Google Scholar]
  28. Swezey R. R., Epel D. The in vivo rate of glucose-6-phosphate dehydrogenase activity in sea urchin eggs determined with a photolabile caged substrate. Dev Biol. 1995 Jun;169(2):733–744. doi: 10.1006/dbio.1995.1183. [DOI] [PubMed] [Google Scholar]
  29. Wilchek M., Lamed R. Immobilized nucleotides for affinity chromatography. Methods Enzymol. 1974;34:475–479. doi: 10.1016/s0076-6879(74)34058-x. [DOI] [PubMed] [Google Scholar]
  30. Wilson H. L., Galione A. Differential regulation of nicotinic acid-adenine dinucleotide phosphate and cADP-ribose production by cAMP and cGMP. Biochem J. 1998 May 1;331(Pt 3):837–843. doi: 10.1042/bj3310837. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES