Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):93–103. doi: 10.1042/BJ20031393

Acylation of SC4 dodecapeptide increases bactericidal potency against Gram-positive bacteria, including drug-resistant strains.

Nathan A Lockwood 1, Judith R Haseman 1, Matthew V Tirrell 1, Kevin H Mayo 1
PMCID: PMC1223937  PMID: 14609430

Abstract

We have conjugated dodecyl and octadecyl fatty acids to the N-terminus of SC4, a potently bactericidal, helix-forming peptide 12-mer (KLFKRHLKWKII), and examined the bactericidal activities of the resultant SC4 'peptide-amphiphile' molecules. SC4 peptide-amphiphiles showed up to a 30-fold increase in bactericidal activity against Gram-positive strains (Staphylococcus aureus, Streptococcus pyogenes and Bacillus anthracis), including S. aureus strains resistant to conventional antibiotics, but little or no increase in bactericidal activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Fatty acid conjugation improved endotoxin (lipopolysaccharide) neutralization by 3- to 6-fold. Although acylation somewhat increased lysis of human erythrocytes, it did not increase lysis of endothelial cells, and the haemolytic effects occurred at concentrations 10- to 100-fold higher than those required for bacterial cell lysis. For insight into the mechanism of action of SC4 peptide-amphiphiles, CD, NMR and fluorescence spectroscopy studies were performed in micelle and liposome models of eukaryotic and bacterial cell membranes. CD indicated that SC4 peptide-amphiphiles had the strongest helical tendencies in liposomes mimicking bacterial membranes, and strong membrane integration of the SC4 peptide-amphiphiles was observed using tryptophan fluorescence spectroscopy under these conditions; results that correlated with the increased bactericidal activities of SC4 peptide-amphiphiles. NMR structural analysis in micelles demonstrated that the two-thirds of the peptide closest to the fatty acid tail exhibited a helical conformation, with the positively-charged side of the amphipathic helix interacting more with the model membrane surface. These results indicate that conjugation of a fatty acid chain to the SC4 peptide enhances membrane interactions, stabilizes helical structure in the membrane-bound state and increases bactericidal potency.

Full Text

The Full Text of this article is available as a PDF (287.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Greenfield N. J., Fasman G. D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 1973;27:675–735. doi: 10.1016/s0076-6879(73)27030-1. [DOI] [PubMed] [Google Scholar]
  2. Agerberth B., Lee J. Y., Bergman T., Carlquist M., Boman H. G., Mutt V., Jörnvall H. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem. 1991 Dec 18;202(3):849–854. doi: 10.1111/j.1432-1033.1991.tb16442.x. [DOI] [PubMed] [Google Scholar]
  3. Andreu D., Merrifield R. B., Steiner H., Boman H. G. N-terminal analogues of cecropin A: synthesis, antibacterial activity, and conformational properties. Biochemistry. 1985 Mar 26;24(7):1683–1688. doi: 10.1021/bi00328a017. [DOI] [PubMed] [Google Scholar]
  4. Avrahami Dorit, Shai Yechiel. Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry. 2002 Feb 19;41(7):2254–2263. doi: 10.1021/bi011549t. [DOI] [PubMed] [Google Scholar]
  5. Bechinger B., Zasloff M., Opella S. J. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 1993 Dec;2(12):2077–2084. doi: 10.1002/pro.5560021208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bohach G. A., Kreiswirth B. N., Novick R. P., Schlievert P. M. Analysis of toxic shock syndrome isolates producing staphylococcal enterotoxins B and C1 with use of southern hybridization and immunologic assays. Rev Infect Dis. 1989 Jan-Feb;11 (Suppl 1):S75–S82. doi: 10.1093/clinids/11.supplement_1.s75. [DOI] [PubMed] [Google Scholar]
  7. Chicharro C., Granata C., Lozano R., Andreu D., Rivas L. N-terminal fatty acid substitution increases the leishmanicidal activity of CA(1-7)M(2-9), a cecropin-melittin hybrid peptide. Antimicrob Agents Chemother. 2001 Sep;45(9):2441–2449. doi: 10.1128/AAC.45.9.2441-2449.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  9. Fields G. B., Lauer J. L., Dori Y., Forns P., Yu Y. C., Tirrell M. Protein-like molecular architecture: biomaterial applications for inducing cellular receptor binding and signal transduction. Biopolymers. 1998;47(2):143–151. doi: 10.1002/(SICI)1097-0282(1998)47:2<143::AID-BIP3>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  10. Ganz T. Antimicrobial proteins and peptides in host defense. Semin Respir Infect. 2001 Mar;16(1):4–10. doi: 10.1053/srin.2001.22723. [DOI] [PubMed] [Google Scholar]
  11. Giangaspero A., Sandri L., Tossi A. Amphipathic alpha helical antimicrobial peptides. Eur J Biochem. 2001 Nov;268(21):5589–5600. doi: 10.1046/j.1432-1033.2001.02494.x. [DOI] [PubMed] [Google Scholar]
  12. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  13. Houston M. E., Jr, Kondejewski L. H., Karunaratne D. N., Gough M., Fidai S., Hodges R. S., Hancock R. E. Influence of preformed alpha-helix and alpha-helix induction on the activity of cationic antimicrobial peptides. J Pept Res. 1998 Aug;52(2):81–88. doi: 10.1111/j.1399-3011.1998.tb01361.x. [DOI] [PubMed] [Google Scholar]
  14. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  15. Johnson J. R., Brown J. J. A novel multiply primed polymerase chain reaction assay for identification of variant papG genes encoding the Gal(alpha 1-4)Gal-binding PapG adhesins of Escherichia coli. J Infect Dis. 1996 Apr;173(4):920–926. doi: 10.1093/infdis/173.4.920. [DOI] [PubMed] [Google Scholar]
  16. Majerle Andreja, Kidric Jurka, Jerala Roman. Enhancement of antibacterial and lipopolysaccharide binding activities of a human lactoferrin peptide fragment by the addition of acyl chain. J Antimicrob Chemother. 2003 Apr 14;51(5):1159–1165. doi: 10.1093/jac/dkg219. [DOI] [PubMed] [Google Scholar]
  17. Mak Pawel, Pohl Jan, Dubin Adam, Reed Matthew S., Bowers Samera E., Fallon Michael T., Shafer William M. The increased bactericidal activity of a fatty acid-modified synthetic antimicrobial peptide of human cathepsin G correlates with its enhanced capacity to interact with model membranes. Int J Antimicrob Agents. 2003 Jan;21(1):13–19. doi: 10.1016/s0924-8579(02)00245-5. [DOI] [PubMed] [Google Scholar]
  18. Matsuzaki K., Yoneyama S., Fujii N., Miyajima K., Yamada K., Kirino Y., Anzai K. Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. Biochemistry. 1997 Aug 12;36(32):9799–9806. doi: 10.1021/bi970588v. [DOI] [PubMed] [Google Scholar]
  19. Mayo K. H., Haseman J., Young H. C., Mayo J. W. Structure-function relationships in novel peptide dodecamerswith broad-spectrum bactericidal and endotoxin-neutralizing activities. Biochem J. 2000 Aug 1;349(Pt 3):717–728. doi: 10.1042/bj3490717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oren Z., Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 1998;47(6):451–463. doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  21. Otvos L., Jr Antibacterial peptides isolated from insects. J Pept Sci. 2000 Oct;6(10):497–511. doi: 10.1002/1099-1387(200010)6:10<497::AID-PSC277>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  22. Schlievert P. M., Blomster D. A. Production of staphylococcal pyrogenic exotoxin type C: influence of physical and chemical factors. J Infect Dis. 1983 Feb;147(2):236–242. doi: 10.1093/infdis/147.2.236. [DOI] [PubMed] [Google Scholar]
  23. Selsted M. E., Harwig S. S. Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J Biol Chem. 1989 Mar 5;264(7):4003–4007. [PubMed] [Google Scholar]
  24. Selsted M. E., Novotny M. J., Morris W. L., Tang Y. Q., Smith W., Cullor J. S. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem. 1992 Mar 5;267(7):4292–4295. [PubMed] [Google Scholar]
  25. Shafer W. M., Pohl J., Onunka V. C., Bangalore N., Travis J. Human lysosomal cathepsin G and granzyme B share a functionally conserved broad spectrum antibacterial peptide. J Biol Chem. 1991 Jan 5;266(1):112–116. [PubMed] [Google Scholar]
  26. Simmaco M., Mignogna G., Barra D. Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers. 1998;47(6):435–450. doi: 10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  27. Tsubery H., Ofek I., Cohen S., Fridkin M. N-terminal modifications of Polymyxin B nonapeptide and their effect on antibacterial activity. Peptides. 2001 Oct;22(10):1675–1681. doi: 10.1016/s0196-9781(01)00503-4. [DOI] [PubMed] [Google Scholar]
  28. Wakabayashi H., Matsumoto H., Hashimoto K., Teraguchi S., Takase M., Hayasawa H. N-Acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob Agents Chemother. 1999 May;43(5):1267–1269. doi: 10.1128/aac.43.5.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wieprecht T., Dathe M., Epand R. M., Beyermann M., Krause E., Maloy W. L., MacDonald D. L., Bienert M. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Biochemistry. 1997 Oct 21;36(42):12869–12880. doi: 10.1021/bi971398n. [DOI] [PubMed] [Google Scholar]
  30. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  31. Young N. S., Levin J., Prendergast R. A. An invertebrate coagulation system activated by endotoxin: evidence for enzymatic mediation. J Clin Invest. 1972 Jul;51(7):1790–1797. doi: 10.1172/JCI106980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zasloff M., Martin B., Chen H. C. Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Natl Acad Sci U S A. 1988 Feb;85(3):910–913. doi: 10.1073/pnas.85.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zemel Assaf, Fattal Deborah R., Ben-Shaul Avinoam. Energetics and self-assembly of amphipathic peptide pores in lipid membranes. Biophys J. 2003 Apr;84(4):2242–2255. doi: 10.1016/S0006-3495(03)75030-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES