Abstract
Recent evidence indicates that mutations in the gene encoding the WNK1 [with no K (lysine) protein kinase-1] results in an inherited hypertension syndrome called pseudohypoaldosteronism type II. The mechanisms by which WNK1 is regulated or the substrates it phosphorylates are currently unknown. We noticed that Thr-60 of WNK1, which lies N-terminal to the catalytic domain, is located within a PKB (protein kinase B) phosphorylation consensus sequence. We found that PKB phosphorylated WNK1 efficiently compared with known substrates, and both peptide map and mutational analysis revealed that the major PKB site of phosphorylation was Thr-60. Employing a phosphospecific Thr-60 WNK1 antibody, we demonstrated that IGF1 (insulin-like growth factor) stimulation of HEK-293 cells induced phosphorylation of endogenously expressed WNK1 at Thr-60. Consistent with PKB mediating this phosphorylation, inhibitors of PI 3-kinase (phosphoinositide 3-kinase; wortmannin and LY294002) but not inhibitors of mammalian target of rapamycin (rapamycin) or MEK1 (mitogen-activated protein kinase kinase-1) activation (PD184352), inhibited IGF1-induced phosphorylation of endogenous WNK1 at Thr-60. Moreover, IGF1-induced phosphorylation of endogenous WNK1 did not occur in PDK1-/- ES (embryonic stem) cells, in which PKB is not activated. In contrast, IGF1 still induced normal phosphorylation of WNK1 in PDK1(L155E/L155E) knock-in ES cells in which PKB, but not S6K (p70 ribosomal S6 kinase) or SGK1 (serum- and glucocorticoid-induced protein kinase 1), is activated. Our study provides strong pharmacological and genetic evidence that PKB mediates the phosphorylation of WNK1 at Thr-60 in vivo. We also performed experiments which suggest that the phosphorylation of WNK1 by PKB is not regulating its kinase activity or cellular localization directly. These results provide the first connection between the PI 3-kinase/PKB pathway and WNK1, suggesting a mechanism by which this pathway may influence blood pressure.
Full Text
The Full Text of this article is available as a PDF (494.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alessi D. R., Andjelkovic M., Caudwell B., Cron P., Morrice N., Cohen P., Hemmings B. A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996 Dec 2;15(23):6541–6551. [PMC free article] [PubMed] [Google Scholar]
- Alessi D. R., Caudwell F. B., Andjelkovic M., Hemmings B. A., Cohen P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett. 1996 Dec 16;399(3):333–338. doi: 10.1016/s0014-5793(96)01370-1. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., Cohen P., Ashworth A., Cowley S., Leevers S. J., Marshall C. J. Assay and expression of mitogen-activated protein kinase, MAP kinase kinase, and Raf. Methods Enzymol. 1995;255:279–290. doi: 10.1016/s0076-6879(95)55031-3. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., Deak M., Casamayor A., Caudwell F. B., Morrice N., Norman D. G., Gaffney P., Reese C. B., MacDougall C. N., Harbison D. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol. 1997 Oct 1;7(10):776–789. doi: 10.1016/s0960-9822(06)00336-8. [DOI] [PubMed] [Google Scholar]
- Alessi D. R. Discovery of PDK1, one of the missing links in insulin signal transduction. Colworth Medal Lecture. Biochem Soc Trans. 2001 May;29(Pt 2):1–14. doi: 10.1042/0300-5127:0290001. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., James S. R., Downes C. P., Holmes A. B., Gaffney P. R., Reese C. B., Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997 Apr 1;7(4):261–269. doi: 10.1016/s0960-9822(06)00122-9. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., Kozlowski M. T., Weng Q. P., Morrice N., Avruch J. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol. 1998 Jan 15;8(2):69–81. doi: 10.1016/s0960-9822(98)70037-5. [DOI] [PubMed] [Google Scholar]
- Brazil D. P., Hemmings B. A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci. 2001 Nov;26(11):657–664. doi: 10.1016/s0968-0004(01)01958-2. [DOI] [PubMed] [Google Scholar]
- Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
- Choate Keith A., Kahle Kristopher T., Wilson Frederick H., Nelson-Williams Carol, Lifton Richard P. WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl- -transporting epithelia. Proc Natl Acad Sci U S A. 2003 Jan 8;100(2):663–668. doi: 10.1073/pnas.242728499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen P., Rylatt D. B., Nimmo G. A. The hormonal control of glycogen metabolism: the amino acid sequence at the phosphorylation site of protein phosphatase inhibitor-1. FEBS Lett. 1977 Apr 15;76(2):182–186. doi: 10.1016/0014-5793(77)80147-6. [DOI] [PubMed] [Google Scholar]
- Collins Barry J., Deak Maria, Arthur J. Simon C., Armit Laura J., Alessi Dario R. In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO J. 2003 Aug 15;22(16):4202–4211. doi: 10.1093/emboj/cdg407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalby K. N., Morrice N., Caudwell F. B., Avruch J., Cohen P. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J Biol Chem. 1998 Jan 16;273(3):1496–1505. doi: 10.1074/jbc.273.3.1496. [DOI] [PubMed] [Google Scholar]
- Deak M., Clifton A. D., Lucocq L. M., Alessi D. R. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998 Aug 3;17(15):4426–4441. doi: 10.1093/emboj/17.15.4426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang X., Yu S. X., Lu Y., Bast R. C., Jr, Woodgett J. R., Mills G. B. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11960–11965. doi: 10.1073/pnas.220413597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frame S., Cohen P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J. 2001 Oct 1;359(Pt 1):1–16. doi: 10.1042/0264-6021:3590001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frödin M., Jensen C. J., Merienne K., Gammeltoft S. A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J. 2000 Jun 15;19(12):2924–2934. doi: 10.1093/emboj/19.12.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamynina Elena, Staub Olivier. Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na(+) transport. Am J Physiol Renal Physiol. 2002 Sep;283(3):F377–F387. doi: 10.1152/ajprenal.00143.2002. [DOI] [PubMed] [Google Scholar]
- Kane Susan, Sano Hiroyuki, Liu Simon C. H., Asara John M., Lane William S., Garner Charles C., Lienhard Gustav E. A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J Biol Chem. 2002 May 6;277(25):22115–22118. doi: 10.1074/jbc.C200198200. [DOI] [PubMed] [Google Scholar]
- Kobayashi T., Cohen P. Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J. 1999 Apr 15;339(Pt 2):319–328. [PMC free article] [PubMed] [Google Scholar]
- Lawlor M. A., Alessi D. R. PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci. 2001 Aug;114(Pt 16):2903–2910. doi: 10.1242/jcs.114.16.2903. [DOI] [PubMed] [Google Scholar]
- Lizcano J. M., Morrice N., Cohen P. Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Biochem J. 2000 Jul 15;349(Pt 2):547–557. doi: 10.1042/0264-6021:3490547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montminy M. Transcriptional regulation by cyclic AMP. Annu Rev Biochem. 1997;66:807–822. doi: 10.1146/annurev.biochem.66.1.807. [DOI] [PubMed] [Google Scholar]
- Obata T., Yaffe M. B., Leparc G. G., Piro E. T., Maegawa H., Kashiwagi A., Kikkawa R., Cantley L. C. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J Biol Chem. 2000 Nov 17;275(46):36108–36115. doi: 10.1074/jbc.M005497200. [DOI] [PubMed] [Google Scholar]
- Pozuelo Rubio Mercedes, Peggie Mark, Wong Barry H. C., Morrice Nick, MacKintosh Carol. 14-3-3s regulate fructose-2,6-bisphosphate levels by binding to PKB-phosphorylated cardiac fructose-2,6-bisphosphate kinase/phosphatase. EMBO J. 2003 Jul 15;22(14):3514–3523. doi: 10.1093/emboj/cdg363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sapkota G. P., Kieloch A., Lizcano J. M., Lain S., Arthur J. S., Williams M. R., Morrice N., Deak M., Alessi D. R. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem. 2001 Jan 31;276(22):19469–19482. doi: 10.1074/jbc.M009953200. [DOI] [PubMed] [Google Scholar]
- Scheid M. P., Woodgett J. R. PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol. 2001 Oct;2(10):760–768. doi: 10.1038/35096067. [DOI] [PubMed] [Google Scholar]
- Scheid Michael P., Woodgett James R. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett. 2003 Jul 3;546(1):108–112. doi: 10.1016/s0014-5793(03)00562-3. [DOI] [PubMed] [Google Scholar]
- Scott J. D. Cyclic nucleotide-dependent protein kinases. Pharmacol Ther. 1991;50(1):123–145. doi: 10.1016/0163-7258(91)90075-w. [DOI] [PubMed] [Google Scholar]
- Sebolt-Leopold J. S., Dudley D. T., Herrera R., Van Becelaere K., Wiland A., Gowan R. C., Tecle H., Barrett S. D., Bridges A., Przybranowski S. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med. 1999 Jul;5(7):810–816. doi: 10.1038/10533. [DOI] [PubMed] [Google Scholar]
- Toker A., Newton A. C. Cellular signaling: pivoting around PDK-1. Cell. 2000 Oct 13;103(2):185–188. doi: 10.1016/s0092-8674(00)00110-0. [DOI] [PubMed] [Google Scholar]
- Vanhaesebroeck B., Leevers S. J., Ahmadi K., Timms J., Katso R., Driscoll P. C., Woscholski R., Parker P. J., Waterfield M. D. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem. 2001;70:535–602. doi: 10.1146/annurev.biochem.70.1.535. [DOI] [PubMed] [Google Scholar]
- Veríssimo F., Jordan P. WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene. 2001 Sep 6;20(39):5562–5569. doi: 10.1038/sj.onc.1204726. [DOI] [PubMed] [Google Scholar]
- Volarević S., Thomas G. Role of S6 phosphorylation and S6 kinase in cell growth. Prog Nucleic Acid Res Mol Biol. 2001;65:101–127. doi: 10.1016/s0079-6603(00)65003-1. [DOI] [PubMed] [Google Scholar]
- Wiggin Giselle R., Soloaga Ana, Foster Julia M., Murray-Tait Victoria, Cohen Philip, Arthur J. Simon C. MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol. 2002 Apr;22(8):2871–2881. doi: 10.1128/MCB.22.8.2871-2881.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams M. R., Arthur J. S., Balendran A., van der Kaay J., Poli V., Cohen P., Alessi D. R. The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr Biol. 2000 Apr 20;10(8):439–448. doi: 10.1016/s0960-9822(00)00441-3. [DOI] [PubMed] [Google Scholar]
- Wilson F. H., Disse-Nicodème S., Choate K. A., Ishikawa K., Nelson-Williams C., Desitter I., Gunel M., Milford D. V., Lipkin G. W., Achard J. M. Human hypertension caused by mutations in WNK kinases. Science. 2001 Aug 10;293(5532):1107–1112. doi: 10.1126/science.1062844. [DOI] [PubMed] [Google Scholar]
- Wilson Frederick H., Kahle Kristopher T., Sabath Ernesto, Lalioti Maria D., Rapson Alicia K., Hoover Robert S., Hebert Steven C., Gamba Gerardo, Lifton Richard P. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc Natl Acad Sci U S A. 2003 Jan 6;100(2):680–684. doi: 10.1073/pnas.242735399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu B., English J. M., Wilsbacher J. L., Stippec S., Goldsmith E. J., Cobb M. H. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem. 2000 Jun 2;275(22):16795–16801. doi: 10.1074/jbc.275.22.16795. [DOI] [PubMed] [Google Scholar]
- Yaffe M. B., Leparc G. G., Lai J., Obata T., Volinia S., Cantley L. C. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol. 2001 Apr;19(4):348–353. doi: 10.1038/86737. [DOI] [PubMed] [Google Scholar]
- Yang Chao-Ling, Angell Jordan, Mitchell Rose, Ellison David H. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest. 2003 Apr;111(7):1039–1045. doi: 10.1172/JCI17443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Hui, Zha Xiangming, Tan Yi, Hornbeck Peter V., Mastrangelo Allison J., Alessi Dario R., Polakiewicz Roberto D., Comb Michael J. Phosphoprotein analysis using antibodies broadly reactive against phosphorylated motifs. J Biol Chem. 2002 Jul 31;277(42):39379–39387. doi: 10.1074/jbc.M206399200. [DOI] [PubMed] [Google Scholar]