Abstract
In adult cardiocytes, eIF4E (eukaryotic initiation factor 4E) activity and protein synthesis are increased concomitantly in response to stimuli that induce hypertrophic growth. We tested the hypothesis that increases in eIF4E activity selectively improve the translational efficiency of mRNAs that have an excessive amount of secondary structure in the 5'-UTR (5'-untranslated region). The activity of eIF4E was modified in primary cultures of adult cardiocytes using adenoviral gene transfer to increase either the amount of eIF4E or the extent of endogenous eIF4E phosphorylation. Subsequently, the effects of eIF4E on translational efficiency were assayed following adenoviral-mediated expression of luciferase reporter mRNAs that were either 'stronger' (less structure in the 5'-UTR) or 'weaker' (more structure in the 5'-UTR) with respect to translational efficiency. The insertion of G+C-rich repeats into the 5'-UTR doubled the predicted amount of secondary structure and was sufficient to reduce translational efficiency of the reporter mRNA by 48+/-13%. Translational efficiency of the weaker reporter mRNA was not significantly improved by overexpression of wild-type eIF4E when compared with the stronger reporter mRNA. In contrast, overexpression of the eIF4E kinase Mnk1 [MAP (mitogen-activated protein) kinase signal-integrating kinase 1] was sufficient to increase the translational efficiency of either reporter mRNA, independent of the amount of secondary structure in their respective 5'-UTRs. The increases in translational efficiency produced by Mnk1 occurred in association with corresponding decreases in mRNA levels. These findings indicate that the positive effect of eIF4E phosphorylation on translational efficiency in adult cardiocytes is coupled with the stability of mRNA.
Full Text
The Full Text of this article is available as a PDF (292.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes K. V., Cheng G., Dawson M. M., Menick D. R. Cloning of cardiac, kidney, and brain promoters of the feline ncx1 gene. J Biol Chem. 1997 Apr 25;272(17):11510–11517. [PubMed] [Google Scholar]
- Beretta L., Gingras A. C., Svitkin Y. V., Hall M. N., Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996 Feb 1;15(3):658–664. [PMC free article] [PubMed] [Google Scholar]
- Bueno O. F., De Windt L. J., Tymitz K. M., Witt S. A., Kimball T. R., Klevitsky R., Hewett T. E., Jones S. P., Lefer D. J., Peng C. F. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 2000 Dec 1;19(23):6341–6350. doi: 10.1093/emboj/19.23.6341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng G., Hagen T. P., Dawson M. L., Barnes K. V., Menick D. R. The role of GATA, CArG, E-box, and a novel element in the regulation of cardiac expression of the Na+-Ca2+ exchanger gene. J Biol Chem. 1999 Apr 30;274(18):12819–12826. doi: 10.1074/jbc.274.18.12819. [DOI] [PubMed] [Google Scholar]
- Cooper G., 4th Cardiocyte adaptation to chronically altered load. Annu Rev Physiol. 1987;49:501–518. doi: 10.1146/annurev.ph.49.030187.002441. [DOI] [PubMed] [Google Scholar]
- Davuluri R. V., Suzuki Y., Sugano S., Zhang M. Q. CART classification of human 5' UTR sequences. Genome Res. 2000 Nov;10(11):1807–1816. doi: 10.1101/gr.gr-1460r. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Benedetti A., Harris A. L. eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol. 1999 Jan;31(1):59–72. doi: 10.1016/s1357-2725(98)00132-0. [DOI] [PubMed] [Google Scholar]
- Gingras A. C., Raught B., Gygi S. P., Niedzwiecka A., Miron M., Burley S. K., Polakiewicz R. D., Wyslouch-Cieszynska A., Aebersold R., Sonenberg N. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 2001 Nov 1;15(21):2852–2864. doi: 10.1101/gad.912401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gingras A. C., Raught B., Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913–963. doi: 10.1146/annurev.biochem.68.1.913. [DOI] [PubMed] [Google Scholar]
- Haghighat A., Mader S., Pause A., Sonenberg N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 1995 Nov 15;14(22):5701–5709. doi: 10.1002/j.1460-2075.1995.tb00257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He T. C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2509–2514. doi: 10.1073/pnas.95.5.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ivester C. T., Kent R. L., Tagawa H., Tsutsui H., Imamura T., Cooper G., 4th, McDermott P. J. Electrically stimulated contraction accelerates protein synthesis rates in adult feline cardiocytes. Am J Physiol. 1993 Aug;265(2 Pt 2):H666–H674. doi: 10.1152/ajpheart.1993.265.2.H666. [DOI] [PubMed] [Google Scholar]
- Kato S., Ivester C. T., Cooper G., 4th, Zile M. R., McDermott P. J. Growth effects of electrically stimulated contraction on adult feline cardiocytes in primary culture. Am J Physiol. 1995 Jun;268(6 Pt 2):H2495–H2504. doi: 10.1152/ajpheart.1995.268.6.H2495. [DOI] [PubMed] [Google Scholar]
- Kimball S. R., Horetsky R. L., Jefferson L. S. Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J Biol Chem. 1998 Nov 20;273(47):30945–30953. doi: 10.1074/jbc.273.47.30945. [DOI] [PubMed] [Google Scholar]
- Knauf U., Tschopp C., Gram H. Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol. 2001 Aug;21(16):5500–5511. doi: 10.1128/MCB.21.16.5500-5511.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koromilas A. E., Lazaris-Karatzas A., Sonenberg N. mRNAs containing extensive secondary structure in their 5' non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J. 1992 Nov;11(11):4153–4158. doi: 10.1002/j.1460-2075.1992.tb05508.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene. 1999 Jul 8;234(2):187–208. doi: 10.1016/s0378-1119(99)00210-3. [DOI] [PubMed] [Google Scholar]
- Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
- Lachance Pascal E. D., Miron Mathieu, Raught Brian, Sonenberg Nahum, Lasko Paul. Phosphorylation of eukaryotic translation initiation factor 4E is critical for growth. Mol Cell Biol. 2002 Mar;22(6):1656–1663. doi: 10.1128/MCB.22.6.1656-1663.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mader S., Lee H., Pause A., Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol. 1995 Sep;15(9):4990–4997. doi: 10.1128/mcb.15.9.4990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marx S. O., Marks A. R. Cell cycle progression and proliferation despite 4BP-1 dephosphorylation. Mol Cell Biol. 1999 Sep;19(9):6041–6047. doi: 10.1128/mcb.19.9.6041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKendrick L., Morley S. J., Pain V. M., Jagus R., Joshi B. Phosphorylation of eukaryotic initiation factor 4E (eIF4E) at Ser209 is not required for protein synthesis in vitro and in vivo. Eur J Biochem. 2001 Oct;268(20):5375–5385. doi: 10.1046/j.0014-2956.2001.02478.x. [DOI] [PubMed] [Google Scholar]
- Morgan H. E., Beinlich C. J. Contributions of increased efficiency and capacity of protein synthesis to rapid cardiac growth. Mol Cell Biochem. 1997 Nov;176(1-2):145–151. [PubMed] [Google Scholar]
- Mothe-Satney I., Yang D., Fadden P., Haystead T. A., Lawrence J. C., Jr Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol Cell Biol. 2000 May;20(10):3558–3567. doi: 10.1128/mcb.20.10.3558-3567.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller Joachim G., Isomatsu Yukihisa, Koushik Srinagesh V., O'Quinn Michael, Xu Lin, Kappler Christiana S., Hapke Elizabeth, Zile Michael R., Conway Simon J., Menick Donald R. Cardiac-specific expression and hypertrophic upregulation of the feline Na(+)-Ca(2+) exchanger gene H1-promoter in a transgenic mouse model. Circ Res. 2002 Feb 8;90(2):158–164. doi: 10.1161/hh0202.103231. [DOI] [PubMed] [Google Scholar]
- Nagai R., Low R. B., Stirewalt W. S., Alpert N. R., Litten R. Z. Efficiency and capacity of protein synthesis are increased in pressure overload cardiac hypertrophy. Am J Physiol. 1988 Aug;255(2 Pt 2):H325–H328. doi: 10.1152/ajpheart.1988.255.2.H325. [DOI] [PubMed] [Google Scholar]
- Nagatomo Y., Carabello B. A., Hamawaki M., Nemoto S., Matsuo T., McDermott P. J. Translational mechanisms accelerate the rate of protein synthesis during canine pressure-overload hypertrophy. Am J Physiol. 1999 Dec;277(6 Pt 2):H2176–H2184. doi: 10.1152/ajpheart.1999.277.6.H2176. [DOI] [PubMed] [Google Scholar]
- Novoa I., Carrasco L. Cleavage of eukaryotic translation initiation factor 4G by exogenously added hybrid proteins containing poliovirus 2Apro in HeLa cells: effects on gene expression. Mol Cell Biol. 1999 Apr;19(4):2445–2454. doi: 10.1128/mcb.19.4.2445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel Jashmin, McLeod Laura E., Vries Robert G. J., Flynn Andrea, Wang Xuemin, Proud Christopher G. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur J Biochem. 2002 Jun;269(12):3076–3085. doi: 10.1046/j.1432-1033.2002.02992.x. [DOI] [PubMed] [Google Scholar]
- Pesole G., Mignone F., Gissi C., Grillo G., Licciulli F., Liuni S. Structural and functional features of eukaryotic mRNA untranslated regions. Gene. 2001 Oct 3;276(1-2):73–81. doi: 10.1016/s0378-1119(01)00674-6. [DOI] [PubMed] [Google Scholar]
- Pyronnet S., Imataka H., Gingras A. C., Fukunaga R., Hunter T., Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J. 1999 Jan 4;18(1):270–279. doi: 10.1093/emboj/18.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pyronnet S. Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. Biochem Pharmacol. 2000 Oct 15;60(8):1237–1243. doi: 10.1016/s0006-2952(00)00429-9. [DOI] [PubMed] [Google Scholar]
- Ramirez Carmen Velasco, Vilela Cristina, Berthelot Karine, McCarthy John E. G. Modulation of eukaryotic mRNA stability via the cap-binding translation complex eIF4F. J Mol Biol. 2002 May 10;318(4):951–962. doi: 10.1016/S0022-2836(02)00162-6. [DOI] [PubMed] [Google Scholar]
- Rao G. N. Oxidant stress stimulates phosphorylation of eIF4E without an effect on global protein synthesis in smooth muscle cells. Lack of evidence for a role of H202 in angiotensin II-induced hypertrophy. J Biol Chem. 2000 Jun 2;275(22):16993–16999. doi: 10.1074/jbc.275.22.16993. [DOI] [PubMed] [Google Scholar]
- Raught B., Gingras A. C. eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol. 1999 Jan;31(1):43–57. doi: 10.1016/s1357-2725(98)00131-9. [DOI] [PubMed] [Google Scholar]
- Saghir A. N., Tuxworth W. J., Jr, Hagedorn C. H., McDermott P. J. Modifications of eukaryotic initiation factor 4F (eIF4F) in adult cardiocytes by adenoviral gene transfer: differential effects on eIF4F activity and total protein synthesis rates. Biochem J. 2001 Jun 1;356(Pt 2):557–566. doi: 10.1042/0264-6021:3560557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheper Gert C., Parra Josep L., Wilson Mary, Van Kollenburg Barbara, Vertegaal Alfred C. O., Han Ze-Guang, Proud Christopher G. The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization. Mol Cell Biol. 2003 Aug;23(16):5692–5705. doi: 10.1128/MCB.23.16.5692-5705.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheper Gert C., Proud Christopher G. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem. 2002 Nov;269(22):5350–5359. doi: 10.1046/j.1432-1033.2002.03291.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheper Gert C., van Kollenburg Barbara, Hu Jianzhong, Luo Yunjing, Goss Dixie J., Proud Christopher G. Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J Biol Chem. 2001 Nov 26;277(5):3303–3309. doi: 10.1074/jbc.M103607200. [DOI] [PubMed] [Google Scholar]
- Schwartz D. C., Parker R. Mutations in translation initiation factors lead to increased rates of deadenylation and decapping of mRNAs in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Aug;19(8):5247–5256. doi: 10.1128/mcb.19.8.5247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuxworth W. J., Jr, Wada H., Ishibashi Y., McDermott P. J. Role of load in regulating eIF-4F complex formation in adult feline cardiocytes. Am J Physiol. 1999 Oct;277(4 Pt 2):H1273–H1282. doi: 10.1152/ajpheart.1999.277.4.H1273. [DOI] [PubMed] [Google Scholar]
- Wada H., Ivester C. T., Carabello B. A., Cooper G., 4th, McDermott P. J. Translational initiation factor eIF-4E. A link between cardiac load and protein synthesis. J Biol Chem. 1996 Apr 5;271(14):8359–8364. doi: 10.1074/jbc.271.14.8359. [DOI] [PubMed] [Google Scholar]
- Wang L., Wang X., Proud C. G. Activation of mRNA translation in rat cardiac myocytes by insulin involves multiple rapamycin-sensitive steps. Am J Physiol Heart Circ Physiol. 2000 Apr;278(4):H1056–H1068. doi: 10.1152/ajpheart.2000.278.4.H1056. [DOI] [PubMed] [Google Scholar]
- Wang Lijun, Proud Christopher G. Ras/Erk signaling is essential for activation of protein synthesis by Gq protein-coupled receptor agonists in adult cardiomyocytes. Circ Res. 2002 Nov 1;91(9):821–829. doi: 10.1161/01.res.0000041029.97988.e9. [DOI] [PubMed] [Google Scholar]
- Waskiewicz A. J., Flynn A., Proud C. G., Cooper J. A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 1997 Apr 15;16(8):1909–1920. doi: 10.1093/emboj/16.8.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waskiewicz A. J., Johnson J. C., Penn B., Mahalingam M., Kimball S. R., Cooper J. A. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol. 1999 Mar;19(3):1871–1880. doi: 10.1128/mcb.19.3.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilusz C. J., Wormington M., Peltz S. W. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol. 2001 Apr;2(4):237–246. doi: 10.1038/35067025. [DOI] [PubMed] [Google Scholar]
- Zimmer S. G., DeBenedetti A., Graff J. R. Translational control of malignancy: the mRNA cap-binding protein, eIF-4E, as a central regulator of tumor formation, growth, invasion and metastasis. Anticancer Res. 2000 May-Jun;20(3A):1343–1351. [PubMed] [Google Scholar]
- Zuker M. Calculating nucleic acid secondary structure. Curr Opin Struct Biol. 2000 Jun;10(3):303–310. doi: 10.1016/s0959-440x(00)00088-9. [DOI] [PubMed] [Google Scholar]
- von Der Haar T., Ball P. D., McCarthy J. E. Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5'-Cap by domains of eIF4G. J Biol Chem. 2000 Sep 29;275(39):30551–30555. doi: 10.1074/jbc.M004565200. [DOI] [PubMed] [Google Scholar]