Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):229–238. doi: 10.1042/BJ20030950

SIPP1, a novel pre-mRNA splicing factor and interactor of protein phosphatase-1.

Miriam Llorian 1, Monique Beullens 1, Isabel Andrés 1, Jose-Miguel Ortiz 1, Mathieu Bollen 1
PMCID: PMC1223944  PMID: 14640981

Abstract

We have identified a polypeptide that was already known to interact with polyglutamine-tract-binding protein (PQBP)-1/Npw38 as a novel splicing factor and interactor of protein phosphatase-1, hence the name SIPP1 for splicing factor that interacts with PQBP-1 and PP1 (protein phosphotase 1). SIPP1 was inhibitory to PP1, and its inhibitory potency was increased by phosphorylation with protein kinase CK1. Two-hybrid and co-sedimentation analysis revealed that SIPP1 has two distinct PP1-binding domains and that the binding of SIPP1 with PP1 involves a RVXF (Arg-Val-Xaa-Phe) motif, which functions as a PP1-binding sequence in most interactors of PP1. Enhanced-green-fluorescent-protein-tagged SIPP1 was targeted exclusively to the nucleus and was enriched in the nuclear speckles, which represent storage/assembly sites of splicing factors. We have mapped a nuclear localization signal in the N-terminus of SIPP1, while the proline-rich C-terminal domain appeared to be required for its subnuclear targeting to the speckles. Finally, we found that SIPP1 is also a component of the spliceosomes and that a SIPP1-fragment inhibits splicing catalysis by nuclear extracts independent of its ability to interact with PP1.

Full Text

The Full Text of this article is available as a PDF (363.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D., MacDougall L. K., Sola M. M., Ikebe M., Cohen P. The control of protein phosphatase-1 by targetting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur J Biochem. 1992 Dec 15;210(3):1023–1035. doi: 10.1111/j.1432-1033.1992.tb17508.x. [DOI] [PubMed] [Google Scholar]
  2. Ayllón V., Cayla X., García A., Roncal F., Fernández R., Albar J. P., Martínez C., Rebollo A. Bcl-2 targets protein phosphatase 1 alpha to Bad. J Immunol. 2001 Jun 15;166(12):7345–7352. doi: 10.4049/jimmunol.166.12.7345. [DOI] [PubMed] [Google Scholar]
  3. Baker S. H., Frederick D. L., Bloecher A., Tatchell K. Alanine-scanning mutagenesis of protein phosphatase type 1 in the yeast Saccharomyces cerevisiae. Genetics. 1997 Mar;145(3):615–626. doi: 10.1093/genetics/145.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beullens M., Stalmans W., Bollen M. The biochemical identification and characterization of new species of protein phosphatase 1. Methods Mol Biol. 1998;93:145–155. doi: 10.1385/0-89603-468-2:145. [DOI] [PubMed] [Google Scholar]
  5. Beullens M., Van Eynde A., Stalmans W., Bollen M. The isolation of novel inhibitory polypeptides of protein phosphatase 1 from bovine thymus nuclei. J Biol Chem. 1992 Aug 15;267(23):16538–16544. [PubMed] [Google Scholar]
  6. Beullens Monique, Bollen Mathieu. The protein phosphatase-1 regulator NIPP1 is also a splicing factor involved in a late step of spliceosome assembly. J Biol Chem. 2002 Mar 21;277(22):19855–19860. doi: 10.1074/jbc.M200847200. [DOI] [PubMed] [Google Scholar]
  7. Bollen M. Combinatorial control of protein phosphatase-1. Trends Biochem Sci. 2001 Jul;26(7):426–431. doi: 10.1016/s0968-0004(01)01836-9. [DOI] [PubMed] [Google Scholar]
  8. Bollen Mathieu, Beullens Monique. Signaling by protein phosphatases in the nucleus. Trends Cell Biol. 2002 Mar;12(3):138–145. doi: 10.1016/s0962-8924(01)02247-4. [DOI] [PubMed] [Google Scholar]
  9. Boudrez A., Beullens M., Groenen P., Van Eynde A., Vulsteke V., Jagiello I., Murray M., Krainer A. R., Stalmans W., Bollen M. NIPP1-mediated interaction of protein phosphatase-1 with CDC5L, a regulator of pre-mRNA splicing and mitotic entry. J Biol Chem. 2000 Aug 18;275(33):25411–25417. doi: 10.1074/jbc.M001676200. [DOI] [PubMed] [Google Scholar]
  10. Boudrez An, Beullens Monique, Waelkens Etienne, Stalmans Willy, Bollen Mathieu. Phosphorylation-dependent interaction between the splicing factors SAP155 and NIPP1. J Biol Chem. 2002 Jun 24;277(35):31834–31841. doi: 10.1074/jbc.M204427200. [DOI] [PubMed] [Google Scholar]
  11. Campos M., Fadden P., Alms G., Qian Z., Haystead T. A. Identification of protein phosphatase-1-binding proteins by microcystin-biotin affinity chromatography. J Biol Chem. 1996 Nov 8;271(45):28478–28484. doi: 10.1074/jbc.271.45.28478. [DOI] [PubMed] [Google Scholar]
  12. Ceulemans Hugo, Stalmans Willy, Bollen Mathieu. Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. Bioessays. 2002 Apr;24(4):371–381. doi: 10.1002/bies.10069. [DOI] [PubMed] [Google Scholar]
  13. Ceulemans Hugo, Vulsteke Veerle, De Maeyer Marc, Tatchell Kelly, Stalmans Willy, Bollen Mathieu. Binding of the concave surface of the Sds22 superhelix to the alpha 4/alpha 5/alpha 6-triangle of protein phosphatase-1. J Biol Chem. 2002 Sep 10;277(49):47331–47337. doi: 10.1074/jbc.M206838200. [DOI] [PubMed] [Google Scholar]
  14. Cohen Patricia T. W. Protein phosphatase 1--targeted in many directions. J Cell Sci. 2002 Jan 15;115(Pt 2):241–256. doi: 10.1242/jcs.115.2.241. [DOI] [PubMed] [Google Scholar]
  15. Connor J. H., Weiser D. C., Li S., Hallenbeck J. M., Shenolikar S. Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol Cell Biol. 2001 Oct;21(20):6841–6850. doi: 10.1128/MCB.21.20.6841-6850.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Craggs G., Finan P. M., Lawson D., Wingfield J., Perera T., Gadher S., Totty N. F., Kellie S. A nuclear SH3 domain-binding protein that colocalizes with mRNA splicing factors and intermediate filament-containing perinuclear networks. J Biol Chem. 2001 May 25;276(32):30552–30560. doi: 10.1074/jbc.M103142200. [DOI] [PubMed] [Google Scholar]
  17. Crespo P., Xu N., Daniotti J. L., Troppmair J., Rapp U. R., Gutkind J. S. Signaling through transforming G protein-coupled receptors in NIH 3T3 cells involves c-Raf activation. Evidence for a protein kinase C-independent pathway. J Biol Chem. 1994 Aug 19;269(33):21103–21109. [PubMed] [Google Scholar]
  18. DeGuzman A., Lee E. Y. Preparation of low-molecular-weight forms of rabbit muscle protein phosphatase. Methods Enzymol. 1988;159:356–368. doi: 10.1016/0076-6879(88)59036-5. [DOI] [PubMed] [Google Scholar]
  19. Egloff M. P., Cohen P. T., Reinemer P., Barford D. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J Mol Biol. 1995 Dec 15;254(5):942–959. doi: 10.1006/jmbi.1995.0667. [DOI] [PubMed] [Google Scholar]
  20. Egloff M. P., Johnson D. F., Moorhead G., Cohen P. T., Cohen P., Barford D. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 1997 Apr 15;16(8):1876–1887. doi: 10.1093/emboj/16.8.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goldberg J., Huang H. B., Kwon Y. G., Greengard P., Nairn A. C., Kuriyan J. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature. 1995 Aug 31;376(6543):745–753. doi: 10.1038/376745a0. [DOI] [PubMed] [Google Scholar]
  22. Hartshorne D. J., Hirano K. Interactions of protein phosphatase type 1, with a focus on myosin phosphatase. Mol Cell Biochem. 1999 Jan;190(1-2):79–84. [PubMed] [Google Scholar]
  23. Helps N. R., Barker H. M., Elledge S. J., Cohen P. T. Protein phosphatase 1 interacts with p53BP2, a protein which binds to the tumour suppressor p53. FEBS Lett. 1995 Dec 27;377(3):295–300. doi: 10.1016/0014-5793(95)01347-4. [DOI] [PubMed] [Google Scholar]
  24. Katayama H., Zhou H., Li Q., Tatsuka M., Sen S. Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J Biol Chem. 2001 Sep 10;276(49):46219–46224. doi: 10.1074/jbc.M107540200. [DOI] [PubMed] [Google Scholar]
  25. Komuro A., Saeki M., Kato S. Association of two nuclear proteins, Npw38 and NpwBP, via the interaction between the WW domain and a novel proline-rich motif containing glycine and arginine. J Biol Chem. 1999 Dec 17;274(51):36513–36519. doi: 10.1074/jbc.274.51.36513. [DOI] [PubMed] [Google Scholar]
  26. Louvet O., Doignon F., Crouzet M. Stable DNA-binding yeast vector allowing high-bait expression for use in the two-hybrid system. Biotechniques. 1997 Nov;23(5):816-8, 820. doi: 10.2144/97235bm11. [DOI] [PubMed] [Google Scholar]
  27. Macias Maria J., Wiesner Silke, Sudol Marius. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 2002 Feb 20;513(1):30–37. doi: 10.1016/s0014-5793(01)03290-2. [DOI] [PubMed] [Google Scholar]
  28. Mermoud J. E., Cohen P. T., Lamond A. I. Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism. EMBO J. 1994 Dec 1;13(23):5679–5688. doi: 10.1002/j.1460-2075.1994.tb06906.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Misteli T., Spector D. L. Protein phosphorylation and the nuclear organization of pre-mRNA splicing. Trends Cell Biol. 1997 Apr;7(4):135–138. doi: 10.1016/S0962-8924(96)20043-1. [DOI] [PubMed] [Google Scholar]
  30. Okazawa Hitoshi, Rich Tina, Chang Alex, Lin Xi, Waragai Masaaki, Kajikawa Masunori, Enokido Yasushi, Komuro Akihiko, Kato Seishi, Shibata Masao. Interaction between mutant ataxin-1 and PQBP-1 affects transcription and cell death. Neuron. 2002 May 30;34(5):701–713. doi: 10.1016/s0896-6273(02)00697-9. [DOI] [PubMed] [Google Scholar]
  31. Rudenko Andrey, Bennett Daimark, Alphey Luke. Trithorax interacts with type 1 serine/threonine protein phosphatase in Drosophila. EMBO Rep. 2003 Jan;4(1):59–63. doi: 10.1038/sj.embor.embor712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Strålfors P., Hiraga A., Cohen P. The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur J Biochem. 1985 Jun 3;149(2):295–303. doi: 10.1111/j.1432-1033.1985.tb08926.x. [DOI] [PubMed] [Google Scholar]
  33. Wakula Paulina, Beullens Monique, Ceulemans Hugo, Stalmans Willy, Bollen Mathieu. Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. J Biol Chem. 2003 Mar 25;278(21):18817–18823. doi: 10.1074/jbc.M300175200. [DOI] [PubMed] [Google Scholar]
  34. Walsh Edmund P., Lamont Douglas J., Beattie Kenneth A., Stark Michael J. R. Novel interactions of Saccharomyces cerevisiae type 1 protein phosphatase identified by single-step affinity purification and mass spectrometry. Biochemistry. 2002 Feb 19;41(7):2409–2420. doi: 10.1021/bi015815e. [DOI] [PubMed] [Google Scholar]
  35. Waragai M., Junn E., Kajikawa M., Takeuchi S., Kanazawa I., Shibata M., Mouradian M. M., Okazawa H. PQBP-1/Npw38, a nuclear protein binding to the polyglutamine tract, interacts with U5-15kD/dim1p via the carboxyl-terminal domain. Biochem Biophys Res Commun. 2000 Jul 5;273(2):592–595. doi: 10.1006/bbrc.2000.2992. [DOI] [PubMed] [Google Scholar]
  36. Washington Kareem, Ammosova Tatyana, Beullens Monique, Jerebtsova Marina, Kumar Ajit, Bollen Mathieu, Nekhai Sergei. Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase-II. J Biol Chem. 2002 Aug 15;277(43):40442–40448. doi: 10.1074/jbc.M205687200. [DOI] [PubMed] [Google Scholar]
  37. Zhang Y., Lindblom T., Chang A., Sudol M., Sluder A. E., Golemis E. A. Evidence that dim1 associates with proteins involved in pre-mRNA splicing, and delineation of residues essential for dim1 interactions with hnRNP F and Npw38/PQBP-1. Gene. 2000 Oct 17;257(1):33–43. doi: 10.1016/s0378-1119(00)00372-3. [DOI] [PubMed] [Google Scholar]
  38. Zhao S., Lee E. Y. A protein phosphatase-1-binding motif identified by the panning of a random peptide display library. J Biol Chem. 1997 Nov 7;272(45):28368–28372. doi: 10.1074/jbc.272.45.28368. [DOI] [PubMed] [Google Scholar]
  39. Zhou Zhaolan, Licklider Lawrence J., Gygi Steven P., Reed Robin. Comprehensive proteomic analysis of the human spliceosome. Nature. 2002 Sep 12;419(6903):182–185. doi: 10.1038/nature01031. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES