Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):1–16. doi: 10.1042/BJ20031547

Targeting of calcium/calmodulin-dependent protein kinase II.

Roger J Colbran 1
PMCID: PMC1223945  PMID: 14653781

Abstract

Calcium/calmodulin-dependent protein kinase II (CaMKII) has diverse roles in virtually all cell types and it is regulated by a plethora of mechanisms. Local changes in Ca2+ concentration drive calmodulin binding and CaMKII activation. Activity is controlled further by autophosphorylation at multiple sites, which can generate an autonomously active form of the kinase (Thr286) or can block Ca2+/calmodulin binding (Thr305/306). The regulated actions of protein phosphatases at these sites also modulate downstream signalling from CaMKII. In addition, CaMKII targeting to specific subcellular microdomains appears to be necessary to account for the known signalling specificity, and targeting is regulated by Ca2+/calmodulin and autophosphorylation. The present review focuses on recent studies revealing the diversity of CaMKII interactions with proteins localized to neuronal dendrites. Interactions with various subunits of the NMDA (N-methyl-D-aspartate) subtype of glutamate receptor have attracted the most attention, but binding of CaMKII to cytoskeletal and several other regulatory proteins has also been reported. Recent reports describing the molecular basis of each interaction and their potential role in the normal regulation of synaptic transmission and in pathological situations are discussed. These studies have revealed fundamental regulatory mechanisms that are probably important for controlling CaMKII functions in many cell types.

Full Text

The Full Text of this article is available as a PDF (318.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apperson M. L., Moon I. S., Kennedy M. B. Characterization of densin-180, a new brain-specific synaptic protein of the O-sialoglycoprotein family. J Neurosci. 1996 Nov 1;16(21):6839–6852. doi: 10.1523/JNEUROSCI.16-21-06839.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronowski J., Grotta J. C. Ca2+/calmodulin-dependent protein kinase II in postsynaptic densities after reversible cerebral ischemia in rats. Brain Res. 1996 Feb 12;709(1):103–110. doi: 10.1016/0006-8993(95)01311-3. [DOI] [PubMed] [Google Scholar]
  3. Bauman Andrea L., Scott John D. Kinase- and phosphatase-anchoring proteins: harnessing the dynamic duo. Nat Cell Biol. 2002 Aug;4(8):E203–E206. doi: 10.1038/ncb0802-e203. [DOI] [PubMed] [Google Scholar]
  4. Bayer K. U., De Koninck P., Leonard A. S., Hell J. W., Schulman H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature. 2001 Jun 14;411(6839):801–805. doi: 10.1038/35081080. [DOI] [PubMed] [Google Scholar]
  5. Bayer K. U., Harbers K., Schulman H. alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J. 1998 Oct 1;17(19):5598–5605. doi: 10.1093/emboj/17.19.5598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bayer K. U., Schulman H. Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Biophys Res Commun. 2001 Dec 21;289(5):917–923. doi: 10.1006/bbrc.2001.6063. [DOI] [PubMed] [Google Scholar]
  7. Benfenati F., Onofri F., Czernik A. J., Valtorta F. Biochemical and functional characterization of the synaptic vesicle-associated form of CA2+/calmodulin-dependent protein kinase II. Brain Res Mol Brain Res. 1996 Sep 1;40(2):297–309. doi: 10.1016/0169-328x(96)00053-8. [DOI] [PubMed] [Google Scholar]
  8. Benfenati F., Valtorta F., Rubenstein J. L., Gorelick F. S., Greengard P., Czernik A. J. Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature. 1992 Oct 1;359(6394):417–420. doi: 10.1038/359417a0. [DOI] [PubMed] [Google Scholar]
  9. Benson D. L., Isackson P. J., Gall C. M., Jones E. G. Differential effects of monocular deprivation on glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase gene expression in the adult monkey visual cortex. J Neurosci. 1991 Jan;11(1):31–47. doi: 10.1523/JNEUROSCI.11-01-00031.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bibb J. A., Nishi A., O'Callaghan J. P., Ule J., Lan M., Snyder G. L., Horiuchi A., Saito T., Hisanaga S., Czernik A. J. Phosphorylation of protein phosphatase inhibitor-1 by Cdk5. J Biol Chem. 2001 Jan 29;276(17):14490–14497. doi: 10.1074/jbc.M007197200. [DOI] [PubMed] [Google Scholar]
  11. Bibb J. A., Snyder G. L., Nishi A., Yan Z., Meijer L., Fienberg A. A., Tsai L. H., Kwon Y. T., Girault J. A., Czernik A. J. Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature. 1999 Dec 9;402(6762):669–671. doi: 10.1038/45251. [DOI] [PubMed] [Google Scholar]
  12. Blitzer R. D., Connor J. H., Brown G. P., Wong T., Shenolikar S., Iyengar R., Landau E. M. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science. 1998 Jun 19;280(5371):1940–1942. doi: 10.1126/science.280.5371.1940. [DOI] [PubMed] [Google Scholar]
  13. Bollen M. Combinatorial control of protein phosphatase-1. Trends Biochem Sci. 2001 Jul;26(7):426–431. doi: 10.1016/s0968-0004(01)01836-9. [DOI] [PubMed] [Google Scholar]
  14. Bradshaw J. Michael, Hudmon Andy, Schulman Howard. Chemical quenched flow kinetic studies indicate an intraholoenzyme autophosphorylation mechanism for Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 2002 Mar 29;277(23):20991–20998. doi: 10.1074/jbc.M202154200. [DOI] [PubMed] [Google Scholar]
  15. Bradshaw J. Michael, Kubota Yoshi, Meyer Tobias, Schulman Howard. An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Proc Natl Acad Sci U S A. 2003 Aug 19;100(18):10512–10517. doi: 10.1073/pnas.1932759100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Braun A. P., Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol. 1995;57:417–445. doi: 10.1146/annurev.ph.57.030195.002221. [DOI] [PubMed] [Google Scholar]
  17. Brickey D. A., Bann J. G., Fong Y. L., Perrino L., Brennan R. G., Soderling T. R. Mutational analysis of the autoinhibitory domain of calmodulin kinase II. J Biol Chem. 1994 Nov 18;269(46):29047–29054. [PubMed] [Google Scholar]
  18. Brocke L., Srinivasan M., Schulman H. Developmental and regional expression of multifunctional Ca2+/calmodulin-dependent protein kinase isoforms in rat brain. J Neurosci. 1995 Oct;15(10):6797–6808. doi: 10.1523/JNEUROSCI.15-10-06797.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Brown G. P., Blitzer R. D., Connor J. H., Wong T., Shenolikar S., Iyengar R., Landau E. M. Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate. J Neurosci. 2000 Nov 1;20(21):7880–7887. doi: 10.1523/JNEUROSCI.20-21-07880.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Burgueño Javier, Blake Derek J., Benson Matthew A., Tinsley Caroline L., Esapa Christopher T., Canela Enric I., Penela Petronila, Mallol Josefa, Mayor Federico, Jr, Lluis Carmen. The adenosine A2A receptor interacts with the actin-binding protein alpha-actinin. J Biol Chem. 2003 Jul 1;278(39):37545–37552. doi: 10.1074/jbc.M302809200. [DOI] [PubMed] [Google Scholar]
  21. Chang B. H., Mukherji S., Soderling T. R. Calcium/calmodulin-dependent protein kinase II inhibitor protein: localization of isoforms in rat brain. Neuroscience. 2001;102(4):767–777. doi: 10.1016/s0306-4522(00)00520-0. [DOI] [PubMed] [Google Scholar]
  22. Chang B. H., Mukherji S., Soderling T. R. Characterization of a calmodulin kinase II inhibitor protein in brain. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10890–10895. doi: 10.1073/pnas.95.18.10890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chen H. J., Rojas-Soto M., Oguni A., Kennedy M. B. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron. 1998 May;20(5):895–904. doi: 10.1016/s0896-6273(00)80471-7. [DOI] [PubMed] [Google Scholar]
  24. Chin David, Means Anthony R. Mechanisms for regulation of calmodulin kinase IIalpha by Ca(2+)/calmodulin and autophosphorylation of threonine 286. Biochemistry. 2002 Nov 26;41(47):14001–14009. doi: 10.1021/bi025640o. [DOI] [PubMed] [Google Scholar]
  25. Colbran R. J., Fong Y. L., Schworer C. M., Soderling T. R. Regulatory interactions of the calmodulin-binding, inhibitory, and autophosphorylation domains of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1988 Dec 5;263(34):18145–18151. [PubMed] [Google Scholar]
  26. Colbran R. J. Inactivation of Ca2+/calmodulin-dependent protein kinase II by basal autophosphorylation. J Biol Chem. 1993 Apr 5;268(10):7163–7170. [PubMed] [Google Scholar]
  27. Colbran R. J., Smith M. K., Schworer C. M., Fong Y. L., Soderling T. R. Regulatory domain of calcium/calmodulin-dependent protein kinase II. Mechanism of inhibition and regulation by phosphorylation. J Biol Chem. 1989 Mar 25;264(9):4800–4804. [PubMed] [Google Scholar]
  28. Costa M. C., Mani F., Santoro W., Jr, Espreafico E. M., Larson R. E. Brain myosin-V, a calmodulin-carrying myosin, binds to calmodulin-dependent protein kinase II and activates its kinase activity. J Biol Chem. 1999 May 28;274(22):15811–15819. doi: 10.1074/jbc.274.22.15811. [DOI] [PubMed] [Google Scholar]
  29. Cruzalegui F. H., Kapiloff M. S., Morfin J. P., Kemp B. E., Rosenfeld M. G., Means A. R. Regulation of intrasteric inhibition of the multifunctional calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12127–12131. doi: 10.1073/pnas.89.24.12127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Cukovic D., Lu G. W., Wible B., Steele D. F., Fedida D. A discrete amino terminal domain of Kv1.5 and Kv1.4 potassium channels interacts with the spectrin repeats of alpha-actinin-2. FEBS Lett. 2001 Jun 1;498(1):87–92. doi: 10.1016/s0014-5793(01)02505-4. [DOI] [PubMed] [Google Scholar]
  31. De Koninck P., Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science. 1998 Jan 9;279(5348):227–230. doi: 10.1126/science.279.5348.227. [DOI] [PubMed] [Google Scholar]
  32. Dhavan R., Tsai L. H. A decade of CDK5. Nat Rev Mol Cell Biol. 2001 Oct;2(10):749–759. doi: 10.1038/35096019. [DOI] [PubMed] [Google Scholar]
  33. Dhavan Rani, Greer Paul L., Morabito Maria A., Orlando Lianna R., Tsai Li-Huei. The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner. J Neurosci. 2002 Sep 15;22(18):7879–7891. doi: 10.1523/JNEUROSCI.22-18-07879.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Dingledine R., Borges K., Bowie D., Traynelis S. F. The glutamate receptor ion channels. Pharmacol Rev. 1999 Mar;51(1):7–61. [PubMed] [Google Scholar]
  35. Dosemeci A., Reese T. S. Inhibition of endogenous phosphatase in a postsynaptic density fraction allows extensive phosphorylation of the major postsynaptic density protein. J Neurochem. 1993 Aug;61(2):550–555. doi: 10.1111/j.1471-4159.1993.tb02158.x. [DOI] [PubMed] [Google Scholar]
  36. Dosemeci A., Reese T. S., Petersen J., Tao-Cheng J. H. A novel particulate form of Ca(2+)/calmodulin-dependent [correction of Ca(2+)/CaMKII-dependent] protein kinase II in neurons. J Neurosci. 2000 May 1;20(9):3076–3084. doi: 10.1523/JNEUROSCI.20-09-03076.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Dosemeci A., Tao-Cheng J. H., Vinade L., Winters C. A., Pozzo-Miller L., Reese T. S. Glutamate-induced transient modification of the postsynaptic density. Proc Natl Acad Sci U S A. 2001 Aug 21;98(18):10428–10432. doi: 10.1073/pnas.181336998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Dzhura Igor, Wu Yuejin, Colbran Roger J., Corbin Jackie D., Balser Jeffrey R., Anderson Mark E. Cytoskeletal disrupting agents prevent calmodulin kinase, IQ domain and voltage-dependent facilitation of L-type Ca2+ channels. J Physiol. 2002 Dec 1;545(Pt 2):399–406. doi: 10.1113/jphysiol.2002.021881. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  39. Ehlers M. D., Zhang S., Bernhadt J. P., Huganir R. L. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell. 1996 Mar 8;84(5):745–755. doi: 10.1016/s0092-8674(00)81052-1. [DOI] [PubMed] [Google Scholar]
  40. Ehlers Michael D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 2003 Mar;6(3):231–242. doi: 10.1038/nn1013. [DOI] [PubMed] [Google Scholar]
  41. Elgersma Ype, Fedorov Nikolai B., Ikonen Sami, Choi Esther S., Elgersma Minetta, Carvalho Ofelia M., Giese Karl Peter, Silva Alcino J. Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron. 2002 Oct 24;36(3):493–505. doi: 10.1016/s0896-6273(02)01007-3. [DOI] [PubMed] [Google Scholar]
  42. Espindola F. S., Espreafico E. M., Coelho M. V., Martins A. R., Costa F. R., Mooseker M. S., Larson R. E. Biochemical and immunological characterization of p190-calmodulin complex from vertebrate brain: a novel calmodulin-binding myosin. J Cell Biol. 1992 Jul;118(2):359–368. doi: 10.1083/jcb.118.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Fink Charles C., Bayer Karl-Ulrich, Myers Jason W., Ferrell James E., Jr, Schulman Howard, Meyer Tobias. Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron. 2003 Jul 17;39(2):283–297. doi: 10.1016/s0896-6273(03)00428-8. [DOI] [PubMed] [Google Scholar]
  44. Fong Dan K., Rao Anuradha, Crump F. Thomas, Craig Ann Marie. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II. J Neurosci. 2002 Mar 15;22(6):2153–2164. doi: 10.1523/JNEUROSCI.22-06-02153.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Forrest D., Yuzaki M., Soares H. D., Ng L., Luk D. C., Sheng M., Stewart C. L., Morgan J. I., Connor J. A., Curran T. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron. 1994 Aug;13(2):325–338. doi: 10.1016/0896-6273(94)90350-6. [DOI] [PubMed] [Google Scholar]
  46. Fukunaga K., Goto S., Miyamoto E. Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase II in rat brain and various tissues. J Neurochem. 1988 Oct;51(4):1070–1078. doi: 10.1111/j.1471-4159.1988.tb03070.x. [DOI] [PubMed] [Google Scholar]
  47. Fukunaga K., Kobayashi T., Tamura S., Miyamoto E. Dephosphorylation of autophosphorylated Ca2+/calmodulin-dependent protein kinase II by protein phosphatase 2C. J Biol Chem. 1993 Jan 5;268(1):133–137. [PubMed] [Google Scholar]
  48. Fukunaga K., Muller D., Miyamoto E. Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. J Biol Chem. 1995 Mar 17;270(11):6119–6124. doi: 10.1074/jbc.270.11.6119. [DOI] [PubMed] [Google Scholar]
  49. Fukunaga K., Soderling T. R., Miyamoto E. Activation of Ca2+/calmodulin-dependent protein kinase II and protein kinase C by glutamate in cultured rat hippocampal neurons. J Biol Chem. 1992 Nov 5;267(31):22527–22533. [PubMed] [Google Scholar]
  50. Fukunaga K., Stoppini L., Miyamoto E., Muller D. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1993 Apr 15;268(11):7863–7867. [PubMed] [Google Scholar]
  51. Gardoni F., Bellone C., Cattabeni F., Di Luca M. Protein kinase C activation modulates alpha-calmodulin kinase II binding to NR2A subunit of N-methyl-D-aspartate receptor complex. J Biol Chem. 2000 Dec 4;276(10):7609–7613. doi: 10.1074/jbc.M009922200. [DOI] [PubMed] [Google Scholar]
  52. Gardoni F., Caputi A., Cimino M., Pastorino L., Cattabeni F., Di Luca M. Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J Neurochem. 1998 Oct;71(4):1733–1741. doi: 10.1046/j.1471-4159.1998.71041733.x. [DOI] [PubMed] [Google Scholar]
  53. Gardoni F., Schrama L. H., Kamal A., Gispen W. H., Cattabeni F., Di Luca M. Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor. J Neurosci. 2001 Mar 1;21(5):1501–1509. doi: 10.1523/JNEUROSCI.21-05-01501.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Gardoni F., Schrama L. H., van Dalen J. J., Gispen W. H., Cattabeni F., Di Luca M. AlphaCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Lett. 1999 Aug 13;456(3):394–398. doi: 10.1016/s0014-5793(99)00985-0. [DOI] [PubMed] [Google Scholar]
  55. Gardoni Fabrizio, Mauceri Daniela, Fiorentini Chiara, Bellone Camilla, Missale Cristina, Cattabeni Flaminio, Di Luca Monica. CaMKII-dependent phosphorylation regulates SAP97/NR2A interaction. J Biol Chem. 2003 Aug 21;278(45):44745–44752. doi: 10.1074/jbc.M303576200. [DOI] [PubMed] [Google Scholar]
  56. Garner C. C., Nash J., Huganir R. L. PDZ domains in synapse assembly and signalling. Trends Cell Biol. 2000 Jul;10(7):274–280. doi: 10.1016/s0962-8924(00)01783-9. [DOI] [PubMed] [Google Scholar]
  57. Genoux David, Haditsch Ursula, Knobloch Marlen, Michalon Aubin, Storm Daniel, Mansuy Isabelle M. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature. 2002 Aug 29;418(6901):970–975. doi: 10.1038/nature00928. [DOI] [PubMed] [Google Scholar]
  58. Giese K. P., Fedorov N. B., Filipkowski R. K., Silva A. J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998 Feb 6;279(5352):870–873. doi: 10.1126/science.279.5352.870. [DOI] [PubMed] [Google Scholar]
  59. Goldenring J. R., McGuire J. S., Jr, DeLorenzo R. J. Identification of the major postsynaptic density protein as homologous with the major calmodulin-binding subunit of a calmodulin-dependent protein kinase. J Neurochem. 1984 Apr;42(4):1077–1084. doi: 10.1111/j.1471-4159.1984.tb12713.x. [DOI] [PubMed] [Google Scholar]
  60. Greengard P., Valtorta F., Czernik A. J., Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science. 1993 Feb 5;259(5096):780–785. doi: 10.1126/science.8430330. [DOI] [PubMed] [Google Scholar]
  61. Hagiwara T., Ohsako S., Yamauchi T. Studies on the regulatory domain of Ca2+/calmodulin-dependent protein kinase II by expression of mutated cDNAs in Escherichia coli. J Biol Chem. 1991 Sep 5;266(25):16401–16408. [PubMed] [Google Scholar]
  62. Hain J., Onoue H., Mayrleitner M., Fleischer S., Schindler H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem. 1995 Feb 3;270(5):2074–2081. doi: 10.1074/jbc.270.5.2074. [DOI] [PubMed] [Google Scholar]
  63. Hanson P. I., Meyer T., Stryer L., Schulman H. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron. 1994 May;12(5):943–956. doi: 10.1016/0896-6273(94)90306-9. [DOI] [PubMed] [Google Scholar]
  64. Hanson P. I., Schulman H. Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis. J Biol Chem. 1992 Aug 25;267(24):17216–17224. [PubMed] [Google Scholar]
  65. Hardingham Neil, Glazewski Stanislaw, Pakhotin Pavel, Mizuno Keiko, Chapman Paul F., Giese K. Peter, Fox Kevin. Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation. J Neurosci. 2003 Jun 1;23(11):4428–4436. doi: 10.1523/JNEUROSCI.23-11-04428.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hashimoto Y., Schworer C. M., Colbran R. J., Soderling T. R. Autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. Effects on total and Ca2+-independent activities and kinetic parameters. J Biol Chem. 1987 Jun 15;262(17):8051–8055. [PubMed] [Google Scholar]
  67. Heist E. K., Srinivasan M., Schulman H. Phosphorylation at the nuclear localization signal of Ca2+/calmodulin-dependent protein kinase II blocks its nuclear targeting. J Biol Chem. 1998 Jul 31;273(31):19763–19771. doi: 10.1074/jbc.273.31.19763. [DOI] [PubMed] [Google Scholar]
  68. Hoelz André, Nairn Angus C., Kuriyan John. Crystal structure of a tetradecameric assembly of the association domain of Ca2+/calmodulin-dependent kinase II. Mol Cell. 2003 May;11(5):1241–1251. doi: 10.1016/s1097-2765(03)00171-0. [DOI] [PubMed] [Google Scholar]
  69. Hudmon A., Aronowski J., Kolb S. J., Waxham M. N. Inactivation and self-association of Ca2+/calmodulin-dependent protein kinase II during autophosphorylation. J Biol Chem. 1996 Apr 12;271(15):8800–8808. doi: 10.1074/jbc.271.15.8800. [DOI] [PubMed] [Google Scholar]
  70. Hudmon A., Kim S. A., Kolb S. J., Stoops J. K., Waxham M. N. Light scattering and transmission electron microscopy studies reveal a mechanism for calcium/calmodulin-dependent protein kinase II self-association. J Neurochem. 2001 Mar;76(5):1364–1375. doi: 10.1046/j.1471-4159.2001.00119.x. [DOI] [PubMed] [Google Scholar]
  71. Hudmon Andy, Schulman Howard. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem. 2001 Nov 9;71:473–510. doi: 10.1146/annurev.biochem.71.110601.135410. [DOI] [PubMed] [Google Scholar]
  72. Hudmon Andy, Schulman Howard. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J. 2002 Jun 15;364(Pt 3):593–611. doi: 10.1042/BJ20020228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Husi H., Ward M. A., Choudhary J. S., Blackstock W. P., Grant S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci. 2000 Jul;3(7):661–669. doi: 10.1038/76615. [DOI] [PubMed] [Google Scholar]
  74. Inagaki N., Nishizawa M., Arimura N., Yamamoto H., Takeuchi Y., Miyamoto E., Kaibuchi K., Inagaki M. Activation of Ca2+/calmodulin-dependent protein kinase II within post-synaptic dendritic spines of cultured hippocampal neurons. J Biol Chem. 2000 Sep 1;275(35):27165–27171. doi: 10.1074/jbc.M003751200. [DOI] [PubMed] [Google Scholar]
  75. Izawa Ichiro, Nishizawa Miwako, Ohtakara Kazuhiro, Inagaki Masaki. Densin-180 interacts with delta-catenin/neural plakophilin-related armadillo repeat protein at synapses. J Biol Chem. 2001 Nov 29;277(7):5345–5350. doi: 10.1074/jbc.M110052200. [DOI] [PubMed] [Google Scholar]
  76. Ji Yong, Li Bailing, Reed Thomas D., Lorenz John N., Kaetzel Marcia A., Dedman John R. Targeted inhibition of Ca2+/calmodulin-dependent protein kinase II in cardiac longitudinal sarcoplasmic reticulum results in decreased phospholamban phosphorylation at threonine 17. J Biol Chem. 2003 Apr 12;278(27):25063–25071. doi: 10.1074/jbc.M302193200. [DOI] [PubMed] [Google Scholar]
  77. Kanaseki T., Ikeuchi Y., Sugiura H., Yamauchi T. Structural features of Ca2+/calmodulin-dependent protein kinase II revealed by electron microscopy. J Cell Biol. 1991 Nov;115(4):1049–1060. doi: 10.1083/jcb.115.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Kelly P. T., McGuinness T. L., Greengard P. Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1984 Feb;81(3):945–949. doi: 10.1073/pnas.81.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Kennedy M. B., Bennett M. K., Erondu N. E. Biochemical and immunochemical evidence that the "major postsynaptic density protein" is a subunit of a calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7357–7361. doi: 10.1073/pnas.80.23.7357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Kennedy M. B. Signal-processing machines at the postsynaptic density. Science. 2000 Oct 27;290(5492):750–754. doi: 10.1126/science.290.5492.750. [DOI] [PubMed] [Google Scholar]
  81. Kim J. H., Liao D., Lau L. F., Huganir R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron. 1998 Apr;20(4):683–691. doi: 10.1016/s0896-6273(00)81008-9. [DOI] [PubMed] [Google Scholar]
  82. Kolb S. J., Hudmon A., Ginsberg T. R., Waxham M. N. Identification of domains essential for the assembly of calcium/calmodulin-dependent protein kinase II holoenzymes. J Biol Chem. 1998 Nov 20;273(47):31555–31564. doi: 10.1074/jbc.273.47.31555. [DOI] [PubMed] [Google Scholar]
  83. Kolodziej S. J., Hudmon A., Waxham M. N., Stoops J. K. Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase IIalpha and truncated CaM kinase IIalpha reveal a unique organization for its structural core and functional domains. J Biol Chem. 2000 May 12;275(19):14354–14359. doi: 10.1074/jbc.275.19.14354. [DOI] [PubMed] [Google Scholar]
  84. Komiyama Noboru H., Watabe Ayako M., Carlisle Holly J., Porter Karen, Charlesworth Paul, Monti Jennifer, Strathdee Douglas J. C., O'Carroll Colin M., Martin Stephen J., Morris Richard G. M. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci. 2002 Nov 15;22(22):9721–9732. doi: 10.1523/JNEUROSCI.22-22-09721.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Kutcher Louis W., Beauman Shirelyn R., Gruenstein Eric I., Kaetzel Marcia A., Dedman John R. Nuclear CaMKII inhibits neuronal differentiation of PC12 cells without affecting MAPK or CREB activation. Am J Physiol Cell Physiol. 2003 Feb 5;284(6):C1334–C1345. doi: 10.1152/ajpcell.00510.2002. [DOI] [PubMed] [Google Scholar]
  86. Lai Y., Nairn A. C., Greengard P. Autophosphorylation reversibly regulates the Ca2+/calmodulin-dependence of Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4253–4257. doi: 10.1073/pnas.83.12.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Leonard A. S., Lim I. A., Hemsworth D. E., Horne M. C., Hell J. W. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3239–3244. doi: 10.1073/pnas.96.6.3239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Leonard A. Soren, Bayer K-Ulrich, Merrill Michelle A., Lim Indra A., Shea Madeline A., Schulman Howard, Hell Johannes W. Regulation of calcium/calmodulin-dependent protein kinase II docking to N-methyl-D-aspartate receptors by calcium/calmodulin and alpha-actinin. J Biol Chem. 2002 Oct 13;277(50):48441–48448. doi: 10.1074/jbc.M205164200. [DOI] [PubMed] [Google Scholar]
  89. Li B. S., Sun M. K., Zhang L., Takahashi S., Ma W., Vinade L., Kulkarni A. B., Brady R. O., Pant H. C. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci U S A. 2001 Oct 2;98(22):12742–12747. doi: 10.1073/pnas.211428098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Li W., Okano A., Tian Q. B., Nakayama K., Furihata T., Nawa H., Suzuki T. Characterization of a novel synGAP isoform, synGAP-beta. J Biol Chem. 2001 Feb 27;276(24):21417–21424. doi: 10.1074/jbc.M010744200. [DOI] [PubMed] [Google Scholar]
  91. Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999 Oct;79(4):1431–1568. doi: 10.1152/physrev.1999.79.4.1431. [DOI] [PubMed] [Google Scholar]
  92. Lisman J. E., Zhabotinsky A. M. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron. 2001 Aug 2;31(2):191–201. doi: 10.1016/s0896-6273(01)00364-6. [DOI] [PubMed] [Google Scholar]
  93. Lisman J., Schulman H., Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002 Mar;3(3):175–190. doi: 10.1038/nrn753. [DOI] [PubMed] [Google Scholar]
  94. Lou L. L., Lloyd S. J., Schulman H. Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase by autophosphorylation: ATP modulates production of an autonomous enzyme. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9497–9501. doi: 10.1073/pnas.83.24.9497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. McNeill R. B., Colbran R. J. Interaction of autophosphorylated Ca2+/calmodulin-dependent protein kinase II with neuronal cytoskeletal proteins. Characterization of binding to a 190-kDa postsynaptic density protein. J Biol Chem. 1995 Apr 28;270(17):10043–10049. doi: 10.1074/jbc.270.17.10043. [DOI] [PubMed] [Google Scholar]
  96. Meador W. E., Means A. R., Quiocho F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. doi: 10.1126/science.8259515. [DOI] [PubMed] [Google Scholar]
  97. Meng Fanjie, Guo Jun, Zhang Quanguang, Song Bo, Zhang Guangyi. Autophosphorylated calcium/calmodulin-dependent protein kinase II alpha (CaMKII alpha) reversibly targets to and phosphorylates N-methyl-D-aspartate receptor subunit 2B (NR2B) in cerebral ischemia and reperfusion in hippocampus of rats. Brain Res. 2003 Mar 28;967(1-2):161–169. doi: 10.1016/s0006-8993(02)04267-1. [DOI] [PubMed] [Google Scholar]
  98. Meng Fanjie, Zhang Guangyi. Autophosphorylated calcium/calmodulin-dependent protein kinase II alpha induced by cerebral ischemia immediately targets and phosphorylates N-methyl-D-aspartate receptor subunit 2B (NR2B) in hippocampus of rats. Neurosci Lett. 2002 Nov 15;333(1):59–63. doi: 10.1016/s0304-3940(02)00961-8. [DOI] [PubMed] [Google Scholar]
  99. Meyer T., Hanson P. I., Stryer L., Schulman H. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science. 1992 May 22;256(5060):1199–1202. doi: 10.1126/science.256.5060.1199. [DOI] [PubMed] [Google Scholar]
  100. Michel Jennifer J. Carlisle, Scott John D. AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol. 2002;42:235–257. doi: 10.1146/annurev.pharmtox.42.083101.135801. [DOI] [PubMed] [Google Scholar]
  101. Miller S. G., Kennedy M. B. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell. 1986 Mar 28;44(6):861–870. doi: 10.1016/0092-8674(86)90008-5. [DOI] [PubMed] [Google Scholar]
  102. Mori H., Manabe T., Watanabe M., Satoh Y., Suzuki N., Toki S., Nakamura K., Yagi T., Kushiya E., Takahashi T. Role of the carboxy-terminal region of the GluR epsilon2 subunit in synaptic localization of the NMDA receptor channel. Neuron. 1998 Sep;21(3):571–580. doi: 10.1016/s0896-6273(00)80567-x. [DOI] [PubMed] [Google Scholar]
  103. Morris E. P., Török K. Oligomeric structure of alpha-calmodulin-dependent protein kinase II. J Mol Biol. 2001 Apr 20;308(1):1–8. doi: 10.1006/jmbi.2001.4584. [DOI] [PubMed] [Google Scholar]
  104. Mukherji S., Soderling T. R. Regulation of Ca2+/calmodulin-dependent protein kinase II by inter- and intrasubunit-catalyzed autophosphorylations. J Biol Chem. 1994 May 13;269(19):13744–13747. [PubMed] [Google Scholar]
  105. Nomura Kazushige, Ohyama Akihiro, Komiya Yoshiaki, Igarashi Michihiro. Minimal residues in linker domain of syntaxin 1A required for binding affinity to Ca2+/calmodulin-dependent protein kinase II. J Neurosci Res. 2003 Apr 15;72(2):198–202. doi: 10.1002/jnr.10563. [DOI] [PubMed] [Google Scholar]
  106. Nori Alessandra, Lin Pei-Ju, Cassetti Arianna, Villa Antonello, Bayer K-Ulrich, Volpe Pompeo. Targeting of alpha-kinase-anchoring protein (alpha KAP) to sarcoplasmic reticulum and nuclei of skeletal muscle. Biochem J. 2003 Mar 15;370(Pt 3):873–880. doi: 10.1042/BJ20021624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Ohta Y., Nishida E., Sakai H. Type II Ca2+/calmodulin-dependent protein kinase binds to actin filaments in a calmodulin-sensitive manner. FEBS Lett. 1986 Nov 24;208(2):423–426. doi: 10.1016/0014-5793(86)81061-4. [DOI] [PubMed] [Google Scholar]
  108. Ohtakara Kazuhiro, Nishizawa Miwako, Izawa Ichiro, Hata Yutaka, Matsushima Satoshi, Taki Waro, Inada Hiroyasu, Takai Yoshimi, Inagaki Masaki. Densin-180, a synaptic protein, links to PSD-95 through its direct interaction with MAGUIN-1. Genes Cells. 2002 Nov;7(11):1149–1160. doi: 10.1046/j.1365-2443.2002.00589.x. [DOI] [PubMed] [Google Scholar]
  109. Ohyama Akihiro, Hosaka Kohei, Komiya Yoshiaki, Akagawa Kimio, Yamauchi Emiko, Taniguchi Hisaaki, Sasagawa Nobuyuki, Kumakura Konosuke, Mochida Sumiko, Yamauchi Takashi. Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulin-activated protein kinase II to syntaxin 1A. J Neurosci. 2002 May 1;22(9):3342–3351. doi: 10.1523/JNEUROSCI.22-09-03342.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Omkumar R. V., Kiely M. J., Rosenstein A. J., Min K. T., Kennedy M. B. Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 1996 Dec 6;271(49):31670–31678. doi: 10.1074/jbc.271.49.31670. [DOI] [PubMed] [Google Scholar]
  111. Otey C. A., Vasquez G. B., Burridge K., Erickson B. W. Mapping of the alpha-actinin binding site within the beta 1 integrin cytoplasmic domain. J Biol Chem. 1993 Oct 5;268(28):21193–21197. [PubMed] [Google Scholar]
  112. Ouimet C. C., McGuinness T. L., Greengard P. Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5604–5608. doi: 10.1073/pnas.81.17.5604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Patton B. L., Miller S. G., Kennedy M. B. Activation of type II calcium/calmodulin-dependent protein kinase by Ca2+/calmodulin is inhibited by autophosphorylation of threonine within the calmodulin-binding domain. J Biol Chem. 1990 Jul 5;265(19):11204–11212. [PubMed] [Google Scholar]
  114. Ramirez M. T., Zhao X. L., Schulman H., Brown J. H. The nuclear deltaB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem. 1997 Dec 5;272(49):31203–31208. doi: 10.1074/jbc.272.49.31203. [DOI] [PubMed] [Google Scholar]
  115. Rosenmund C., Westbrook G. L. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron. 1993 May;10(5):805–814. doi: 10.1016/0896-6273(93)90197-y. [DOI] [PubMed] [Google Scholar]
  116. Sabatini Bernardo L., Oertner Thomas G., Svoboda Karel. The life cycle of Ca(2+) ions in dendritic spines. Neuron. 2002 Jan 31;33(3):439–452. doi: 10.1016/s0896-6273(02)00573-1. [DOI] [PubMed] [Google Scholar]
  117. Santoni Marie-Josée, Pontarotti Pierre, Birnbaum Daniel, Borg Jean-Paul. The LAP family: a phylogenetic point of view. Trends Genet. 2002 Oct;18(10):494–497. doi: 10.1016/s0168-9525(02)02738-5. [DOI] [PubMed] [Google Scholar]
  118. Schulman H. The multifunctional Ca2+/calmodulin-dependent protein kinase. Adv Second Messenger Phosphoprotein Res. 1988;22:39–112. [PubMed] [Google Scholar]
  119. Schworer C. M., Colbran R. J., Soderling T. R. Reversible generation of a Ca2+-independent form of Ca2+(calmodulin)-dependent protein kinase II by an autophosphorylation mechanism. J Biol Chem. 1986 Jul 5;261(19):8581–8584. [PubMed] [Google Scholar]
  120. Shackelford D. A., Yeh R. Y., Hsu M., Buzsáki G., Zivin J. A. Effect of cerebral ischemia on calcium/calmodulin-dependent protein kinase II activity and phosphorylation. J Cereb Blood Flow Metab. 1995 May;15(3):450–461. doi: 10.1038/jcbfm.1995.56. [DOI] [PubMed] [Google Scholar]
  121. Shen K., Meyer T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science. 1999 Apr 2;284(5411):162–166. doi: 10.1126/science.284.5411.162. [DOI] [PubMed] [Google Scholar]
  122. Shen K., Meyer T. In vivo and in vitro characterization of the sequence requirement for oligomer formation of Ca2+/calmodulin-dependent protein kinase IIalpha. J Neurochem. 1998 Jan;70(1):96–104. doi: 10.1046/j.1471-4159.1998.70010096.x. [DOI] [PubMed] [Google Scholar]
  123. Shen K., Teruel M. N., Connor J. H., Shenolikar S., Meyer T. Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nat Neurosci. 2000 Sep;3(9):881–886. doi: 10.1038/78783. [DOI] [PubMed] [Google Scholar]
  124. Shen K., Teruel M. N., Subramanian K., Meyer T. CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron. 1998 Sep;21(3):593–606. doi: 10.1016/s0896-6273(00)80569-3. [DOI] [PubMed] [Google Scholar]
  125. Sheng M. Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7058–7061. doi: 10.1073/pnas.111146298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Shields S. M., Ingebritsen T. S., Kelly P. T. Identification of protein phosphatase 1 in synaptic junctions: dephosphorylation of endogenous calmodulin-dependent kinase II and synapse-enriched phosphoproteins. J Neurosci. 1985 Dec;5(12):3414–3422. doi: 10.1523/JNEUROSCI.05-12-03414.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Singla S. I., Hudmon A., Goldberg J. M., Smith J. L., Schulman H. Molecular characterization of calmodulin trapping by calcium/calmodulin-dependent protein kinase II. J Biol Chem. 2001 May 30;276(31):29353–29360. doi: 10.1074/jbc.M101744200. [DOI] [PubMed] [Google Scholar]
  128. Smith M. K., Colbran R. J., Brickey D. A., Soderling T. R. Functional determinants in the autoinhibitory domain of calcium/calmodulin-dependent protein kinase II. Role of His282 and multiple basic residues. J Biol Chem. 1992 Jan 25;267(3):1761–1768. [PubMed] [Google Scholar]
  129. Sprengel R., Suchanek B., Amico C., Brusa R., Burnashev N., Rozov A., Hvalby O., Jensen V., Paulsen O., Andersen P. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell. 1998 Jan 23;92(2):279–289. doi: 10.1016/s0092-8674(00)80921-6. [DOI] [PubMed] [Google Scholar]
  130. Srinivasan M., Edman C. F., Schulman H. Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J Cell Biol. 1994 Aug;126(4):839–852. doi: 10.1083/jcb.126.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Strack S., Barban M. A., Wadzinski B. E., Colbran R. J. Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. J Neurochem. 1997 May;68(5):2119–2128. doi: 10.1046/j.1471-4159.1997.68052119.x. [DOI] [PubMed] [Google Scholar]
  132. Strack S., Choi S., Lovinger D. M., Colbran R. J. Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J Biol Chem. 1997 May 23;272(21):13467–13470. doi: 10.1074/jbc.272.21.13467. [DOI] [PubMed] [Google Scholar]
  133. Strack S., Colbran R. J. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem. 1998 Aug 14;273(33):20689–20692. doi: 10.1074/jbc.273.33.20689. [DOI] [PubMed] [Google Scholar]
  134. Strack S., McNeill R. B., Colbran R. J. Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 2000 Aug 4;275(31):23798–23806. doi: 10.1074/jbc.M001471200. [DOI] [PubMed] [Google Scholar]
  135. Strack S., Robison A. J., Bass M. A., Colbran R. J. Association of calcium/calmodulin-dependent kinase II with developmentally regulated splice variants of the postsynaptic density protein densin-180. J Biol Chem. 2000 Aug 18;275(33):25061–25064. doi: 10.1074/jbc.C000319200. [DOI] [PubMed] [Google Scholar]
  136. Sun P., Enslen H., Myung P. S., Maurer R. A. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 1994 Nov 1;8(21):2527–2539. doi: 10.1101/gad.8.21.2527. [DOI] [PubMed] [Google Scholar]
  137. Suzuki T., Okumura-Noji K., Tanaka R., Tada T. Rapid translocation of cytosolic Ca2+/calmodulin-dependent protein kinase II into postsynaptic density after decapitation. J Neurochem. 1994 Oct;63(4):1529–1537. doi: 10.1046/j.1471-4159.1994.63041529.x. [DOI] [PubMed] [Google Scholar]
  138. Tao-Cheng J-H, Vinade L., Pozzo-Miller L. D., Reese T. S., Dosemeci A. Calcium/calmodulin-dependent protein kinase II clusters in adult rat hippocampal slices. Neuroscience. 2002;115(2):435–440. doi: 10.1016/s0306-4522(02)00451-7. [DOI] [PubMed] [Google Scholar]
  139. Tao-Cheng J. H., Vinade L., Smith C., Winters C. A., Ward R., Brightman M. W., Reese T. S., Dosemeci A. Sustained elevation of calcium induces Ca(2+)/calmodulin-dependent protein kinase II clusters in hippocampal neurons. Neuroscience. 2001;106(1):69–78. doi: 10.1016/s0306-4522(01)00262-7. [DOI] [PubMed] [Google Scholar]
  140. Thiagarajan Tara C., Piedras-Renteria Erika S., Tsien Richard W. alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron. 2002 Dec 19;36(6):1103–1114. doi: 10.1016/s0896-6273(02)01049-8. [DOI] [PubMed] [Google Scholar]
  141. Vallano M. L., Goldenring J. R., Lasher R. S., Delorenzo R. J. Association of calcium/calmodulin-dependent kinase with cytoskeletal preparations: phosphorylation of tubulin, neurofilament, and microtubule-associated proteins. Ann N Y Acad Sci. 1986;466:357–374. doi: 10.1111/j.1749-6632.1986.tb38406.x. [DOI] [PubMed] [Google Scholar]
  142. Walikonis R. S., Oguni A., Khorosheva E. M., Jeng C. J., Asuncion F. J., Kennedy M. B. Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2+/calmodulin-dependent protein kinase II and (alpha)-actinin. J Neurosci. 2001 Jan 15;21(2):423–433. doi: 10.1523/JNEUROSCI.21-02-00423.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Waxham M. N., Aronowski J., Kelly P. T. Functional analysis of Ca2+/calmodulin-dependent protein kinase II expressed in bacteria. J Biol Chem. 1989 May 5;264(13):7477–7482. [PubMed] [Google Scholar]
  144. Waxham M. N., Tsai A. L., Putkey J. A. A mechanism for calmodulin (CaM) trapping by CaM-kinase II defined by a family of CaM-binding peptides. J Biol Chem. 1998 Jul 10;273(28):17579–17584. doi: 10.1074/jbc.273.28.17579. [DOI] [PubMed] [Google Scholar]
  145. Weeber Edwin J., Jiang Yong-Hui, Elgersma Ype, Varga Andrew W., Carrasquillo Yarimar, Brown Sarah E., Christian Jill M., Mirnikjoo Banefsheh, Silva Alcino, Beaudet Arthur L. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci. 2003 Apr 1;23(7):2634–2644. doi: 10.1523/JNEUROSCI.23-07-02634.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Woodgett J. R., Davison M. T., Cohen P. The calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle. Purification, subunit structure and substrate specificity. Eur J Biochem. 1983 Nov 15;136(3):481–487. doi: 10.1111/j.1432-1033.1983.tb07766.x. [DOI] [PubMed] [Google Scholar]
  147. Wu Y., MacMillan L. B., McNeill R. B., Colbran R. J., Anderson M. E. CaM kinase augments cardiac L-type Ca2+ current: a cellular mechanism for long Q-T arrhythmias. Am J Physiol. 1999 Jun;276(6 Pt 2):H2168–H2178. doi: 10.1152/ajpheart.1999.276.6.H2168. [DOI] [PubMed] [Google Scholar]
  148. Wyszynski M., Kharazia V., Shanghvi R., Rao A., Beggs A. H., Craig A. M., Weinberg R., Sheng M. Differential regional expression and ultrastructural localization of alpha-actinin-2, a putative NMDA receptor-anchoring protein, in rat brain. J Neurosci. 1998 Feb 15;18(4):1383–1392. doi: 10.1523/JNEUROSCI.18-04-01383.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Wyszynski M., Lin J., Rao A., Nigh E., Beggs A. H., Craig A. M., Sheng M. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature. 1997 Jan 30;385(6615):439–442. doi: 10.1038/385439a0. [DOI] [PubMed] [Google Scholar]
  150. Yamauchi T., Fujisawa H. Regulation of the interaction of actin filaments with microtubule-associated protein 2 by calmodulin-dependent protein kinase II. Biochim Biophys Acta. 1988 Jan 18;968(1):77–85. doi: 10.1016/0167-4889(88)90046-8. [DOI] [PubMed] [Google Scholar]
  151. Yamauchi T., Yoshimura Y. Phosphorylation-dependent reversible translocation of Ca2+/calmodulin-dependent protein kinase II to the postsynaptic densities. Life Sci. 1998;62(17-18):1617–1621. doi: 10.1016/s0024-3205(98)00117-9. [DOI] [PubMed] [Google Scholar]
  152. Yang E., Schulman H. Structural examination of autoregulation of multifunctional calcium/calmodulin-dependent protein kinase II. J Biol Chem. 1999 Sep 10;274(37):26199–26208. doi: 10.1074/jbc.274.37.26199. [DOI] [PubMed] [Google Scholar]
  153. Yokoyama C. T., Sheng Z. H., Catterall W. A. Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J Neurosci. 1997 Sep 15;17(18):6929–6938. doi: 10.1523/JNEUROSCI.17-18-06929.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Yoshimura Y., Sogawa Y., Yamauchi T. Protein phosphatase 1 is involved in the dissociation of Ca2+/calmodulin-dependent protein kinase II from postsynaptic densities. FEBS Lett. 1999 Mar 12;446(2-3):239–242. doi: 10.1016/s0014-5793(99)00226-4. [DOI] [PubMed] [Google Scholar]
  155. Zalewska T., Domanska-Janik K. Brain ischaemia transiently activates Ca2+/calmodulin-independent protein kinase II. Neuroreport. 1996 Jan 31;7(2):637–641. doi: 10.1097/00001756-199601310-00062. [DOI] [PubMed] [Google Scholar]
  156. Zhang S., Ehlers M. D., Bernhardt J. P., Su C. T., Huganir R. L. Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron. 1998 Aug;21(2):443–453. doi: 10.1016/s0896-6273(00)80553-x. [DOI] [PubMed] [Google Scholar]
  157. Ziff E. B. Enlightening the postsynaptic density. Neuron. 1997 Dec;19(6):1163–1174. doi: 10.1016/s0896-6273(00)80409-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES