Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Feb 15;378(Pt 1):27–34. doi: 10.1042/BJ20031794

TAB3, a new binding partner of the protein kinase TAK1.

Peter C F Cheung 1, Angel R Nebreda 1, Philip Cohen 1
PMCID: PMC1223947  PMID: 14670075

Abstract

We have identified a new binding partner of the TGFbeta (transforming growth factor-beta)-activated protein kinase (TAK1), termed TAB3 (TAK1-binding protein-3), which shares 48% amino acid sequence identity with TAB2. Our results indicate that two distinct TAK1 complexes are present in cells. One comprises TAK1 complexed with TAB1 and TAB2, and the other TAK1 complexed with TAB1 and TAB3. Both complexes are activated in response to tumour necrosis factor-alpha or interleukin-1 in human epithelial KB cells or bacterial lipopolysaccharide in RAW264.7 macrophages, and are subject to feedback control by stress-activated protein kinase 2a (SAPK2a; also called p38alpha). The electrophoretic mobility of TAB2 and TAB3 decreases in response to these agonists or osmotic shock, and is reversed by treatment with protein phosphatase-1. The decrease in mobility of TAB3 is prevented if the cells are incubated with SB 203580 before stimulation, but treatment with SB 203580 produces forms of TAB2 with a mobility intermediate between that observed for TAB2 in unstimulated and stimulated cells. Similar results were obtained in embryonic fibroblasts from mice deficient in SAPK2a/p38alpha. Our results indicate that TAB3 is phosphorylated via the SAPK2a/p38alpha pathway, whereas TAB2 is phosphorylated at two or more sites by both an SAPK2a/p38alpha-dependent and an SB 203580-independent kinase. The SAPK2a/p38alpha-mediated phosphorylation of TAB2 and TAB3 may contribute to the SAPK2a/p38alpha-mediated feedback control of TAK1 activity that also involves the phosphorylation of TAB1. We also show that the agonist-induced activation of TAK1 complexes requires the phosphorylation of the TAK1 catalytic subunit at a serine/threonine residue(s).

Full Text

The Full Text of this article is available as a PDF (389.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baek Sung Hee, Ohgi Kenneth A., Rose David W., Koo Edward H., Glass Christopher K., Rosenfeld Michael G. Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell. 2002 Jul 12;110(1):55–67. doi: 10.1016/s0092-8674(02)00809-7. [DOI] [PubMed] [Google Scholar]
  2. Cheung Peter C. F., Campbell David G., Nebreda Angel R., Cohen Philip. Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. EMBO J. 2003 Nov 3;22(21):5793–5805. doi: 10.1093/emboj/cdg552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ishitani Tohru, Takaesu Giichi, Ninomiya-Tsuji Jun, Shibuya Hiroshi, Gaynor Richard B., Matsumoto Kunihiro. Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO J. 2003 Dec 1;22(23):6277–6288. doi: 10.1093/emboj/cdg605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jiang Zhengfan, Ninomiya-Tsuji Jun, Qian Youcun, Matsumoto Kunihiro, Li Xiaoxia. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol. 2002 Oct;22(20):7158–7167. doi: 10.1128/MCB.22.20.7158-7167.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kishimoto K., Matsumoto K., Ninomiya-Tsuji J. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J Biol Chem. 2000 Mar 10;275(10):7359–7364. doi: 10.1074/jbc.275.10.7359. [DOI] [PubMed] [Google Scholar]
  6. Lee J., Mira-Arbibe L., Ulevitch R. J. TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide. J Leukoc Biol. 2000 Dec;68(6):909–915. [PubMed] [Google Scholar]
  7. Lomaga M. A., Yeh W. C., Sarosi I., Duncan G. S., Furlonger C., Ho A., Morony S., Capparelli C., Van G., Kaufman S. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999 Apr 15;13(8):1015–1024. doi: 10.1101/gad.13.8.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Meyer Hemmo H., Wang Yanzhuang, Warren Graham. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 2002 Nov 1;21(21):5645–5652. doi: 10.1093/emboj/cdf579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Muñoz-Sanjuán Ignacio, Bell Esther, Altmann Curtis R., Vonica Alin, Brivanlou Ali H. Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein. Development. 2002 Dec;129(23):5529–5540. doi: 10.1242/dev.00097. [DOI] [PubMed] [Google Scholar]
  10. Ninomiya-Tsuji J., Kishimoto K., Hiyama A., Inoue J., Cao Z., Matsumoto K. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature. 1999 Mar 18;398(6724):252–256. doi: 10.1038/18465. [DOI] [PubMed] [Google Scholar]
  11. Ogihara Takeshi, Watada Hirotaka, Kanno Rei, Ikeda Fuki, Nomiyama Takashi, Tanaka Yasushi, Nakao Atsuhito, German Michael S., Kojima Itaru, Kawamori Ryuzo. p38 MAPK is involved in activin A- and hepatocyte growth factor-mediated expression of pro-endocrine gene neurogenin 3 in AR42J-B13 cells. J Biol Chem. 2003 Apr 1;278(24):21693–21700. doi: 10.1074/jbc.M302684200. [DOI] [PubMed] [Google Scholar]
  12. Sanjo Hideki, Takeda Kiyoshi, Tsujimura Tohru, Ninomiya-Tsuji Jun, Matsumoto Kunihiro, Akira Shizuo. TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol Cell Biol. 2003 Feb;23(4):1231–1238. doi: 10.1128/MCB.23.4.1231-1238.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shibuya H., Yamaguchi K., Shirakabe K., Tonegawa A., Gotoh Y., Ueno N., Irie K., Nishida E., Matsumoto K. TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science. 1996 May 24;272(5265):1179–1182. doi: 10.1126/science.272.5265.1179. [DOI] [PubMed] [Google Scholar]
  14. Shih Susan C., Prag Gali, Francis Smitha A., Sutanto Myra A., Hurley James H., Hicke Linda. A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain. EMBO J. 2003 Mar 17;22(6):1273–1281. doi: 10.1093/emboj/cdg140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Takaesu G., Kishida S., Hiyama A., Yamaguchi K., Shibuya H., Irie K., Ninomiya-Tsuji J., Matsumoto K. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell. 2000 Apr;5(4):649–658. doi: 10.1016/s1097-2765(00)80244-0. [DOI] [PubMed] [Google Scholar]
  16. Takaesu Giichi, Surabhi Rama M., Park Kyu-Jin, Ninomiya-Tsuji Jun, Matsumoto Kunihiro, Gaynor Richard B. TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol. 2003 Feb 7;326(1):105–115. doi: 10.1016/s0022-2836(02)01404-3. [DOI] [PubMed] [Google Scholar]
  17. Wang C., Deng L., Hong M., Akkaraju G. R., Inoue J., Chen Z. J. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001 Jul 19;412(6844):346–351. doi: 10.1038/35085597. [DOI] [PubMed] [Google Scholar]
  18. Xu Zhen, Lai Kwok-On, Zhou Hai-Meng, Lin Sheng-Cai, Ip Nancy Y. Ephrin-B1 reverse signaling activates JNK through a novel mechanism that is independent of tyrosine phosphorylation. J Biol Chem. 2003 Apr 22;278(27):24767–24775. doi: 10.1074/jbc.M302454200. [DOI] [PubMed] [Google Scholar]
  19. Yamaguchi K., Shirakabe K., Shibuya H., Irie K., Oishi I., Ueno N., Taniguchi T., Nishida E., Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science. 1995 Dec 22;270(5244):2008–2011. doi: 10.1126/science.270.5244.2008. [DOI] [PubMed] [Google Scholar]
  20. Yeh W. C., Shahinian A., Speiser D., Kraunus J., Billia F., Wakeham A., de la Pompa J. L., Ferrick D., Hum B., Iscove N. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity. 1997 Nov;7(5):715–725. doi: 10.1016/s1074-7613(00)80391-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES