Abstract
Recent findings indicate that the expression of the beta-catalytic subunit of the mitochondrial H+-ATP synthase (beta-F1-ATPase) is depressed in liver, kidney and colon carcinomas, providing further a bioenergetic signature of cancer that is associated with patient survival. In the present study, we performed an analysis of mitochondrial and glycolytic protein markers in breast, gastric and prostate adenocarcinomas, and in squamous oesophageal and lung carcinomas. The expression of mitochondrial and glycolytic markers varied significantly in these carcinomas, when compared with paired normal tissues, with the exception of prostate cancer. Overall, the relative expression of beta-F1-ATPase was significantly reduced in breast and gastric adenocarcinomas, as well as in squamous oesophageal and lung carcinomas, strongly suggesting that alteration of the bioenergetic function of mitochondria is a hallmark of these types of cancer.
Full Text
The Full Text of this article is available as a PDF (144.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cuezva J. M., Ostronoff L. K., Ricart J., López de Heredia M., Di Liegro C. M., Izquierdo J. M. Mitochondrial biogenesis in the liver during development and oncogenesis. J Bioenerg Biomembr. 1997 Aug;29(4):365–377. doi: 10.1023/a:1022450831360. [DOI] [PubMed] [Google Scholar]
- Cuezva José M., Krajewska Maryla, de Heredia Miguel López, Krajewski Stanislaw, Santamaría Gema, Kim Hoguen, Zapata Juan M., Marusawa Hiroyuki, Chamorro Margarita, Reed John C. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res. 2002 Nov 15;62(22):6674–6681. [PubMed] [Google Scholar]
- Dey R., Moraes C. T. Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem. 2000 Mar 10;275(10):7087–7094. doi: 10.1074/jbc.275.10.7087. [DOI] [PubMed] [Google Scholar]
- Di Liegro C. M., Bellafiore M., Izquierdo J. M., Rantanen A., Cuezva J. M. 3'-untranslated regions of oxidative phosphorylation mRNAs function in vivo as enhancers of translation. Biochem J. 2000 Nov 15;352(Pt 1):109–115. [PMC free article] [PubMed] [Google Scholar]
- Garesse R., Vallejo C. G. Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene. 2001 Jan 24;263(1-2):1–16. doi: 10.1016/s0378-1119(00)00582-5. [DOI] [PubMed] [Google Scholar]
- Harris M. H., Vander Heiden M. G., Kron S. J., Thompson C. B. Role of oxidative phosphorylation in Bax toxicity. Mol Cell Biol. 2000 May;20(10):3590–3596. doi: 10.1128/mcb.20.10.3590-3596.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izquierdo J. M., Cuezva J. M. Control of the translational efficiency of beta-F1-ATPase mRNA depends on the regulation of a protein that binds the 3' untranslated region of the mRNA. Mol Cell Biol. 1997 Sep;17(9):5255–5268. doi: 10.1128/mcb.17.9.5255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izquierdo J. M., Cuezva J. M. Internal-ribosome-entry-site functional activity of the 3'-untranslated region of the mRNA for the beta subunit of mitochondrial H+-ATP synthase. Biochem J. 2000 Mar 15;346(Pt 3):849–855. [PMC free article] [PubMed] [Google Scholar]
- Izquierdo J. M., Ricart J., Ostronoff L. K., Egea G., Cuezva J. M. Changing patterns of transcriptional and post-transcriptional control of beta-F1-ATPase gene expression during mitochondrial biogenesis in liver. J Biol Chem. 1995 Apr 28;270(17):10342–10350. doi: 10.1074/jbc.270.17.10342. [DOI] [PubMed] [Google Scholar]
- Lal A., Lash A. E., Altschul S. F., Velculescu V., Zhang L., McLendon R. E., Marra M. A., Prange C., Morin P. J., Polyak K. A public database for gene expression in human cancers. Cancer Res. 1999 Nov 1;59(21):5403–5407. [PubMed] [Google Scholar]
- Liotta Lance A., Kohn Elise C. Cancer's deadly signature. Nat Genet. 2003 Jan;33(1):10–11. doi: 10.1038/ng0103-10. [DOI] [PubMed] [Google Scholar]
- Luis A. M., Izquierdo J. M., Ostronoff L. K., Salinas M., Santarén J. F., Cuezva J. M. Translational regulation of mitochondrial differentiation in neonatal rat liver. Specific increase in the translational efficiency of the nuclear-encoded mitochondrial beta-F1-ATPase mRNA. J Biol Chem. 1993 Jan 25;268(3):1868–1875. [PubMed] [Google Scholar]
- Matsuyama S., Xu Q., Velours J., Reed J. C. The Mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell. 1998 Feb;1(3):327–336. doi: 10.1016/s1097-2765(00)80033-7. [DOI] [PubMed] [Google Scholar]
- Petricoin Emanuel F., Zoon Kathryn C., Kohn Elise C., Barrett J. Carl, Liotta Lance A. Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov. 2002 Sep;1(9):683–695. doi: 10.1038/nrd891. [DOI] [PubMed] [Google Scholar]
- Ramaswamy Sridhar, Golub Todd R. DNA microarrays in clinical oncology. J Clin Oncol. 2002 Apr 1;20(7):1932–1941. doi: 10.1200/JCO.2002.20.7.1932. [DOI] [PubMed] [Google Scholar]
- Ramaswamy Sridhar, Ross Ken N., Lander Eric S., Golub Todd R. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2002 Dec 9;33(1):49–54. doi: 10.1038/ng1060. [DOI] [PubMed] [Google Scholar]
- Ricart Javier, Izquierdo José M., Di Liegro Carlo M., Cuezva José M. Assembly of the ribonucleoprotein complex containing the mRNA of the beta-subunit of the mitochondrial H+-ATP synthase requires the participation of two distal cis-acting elements and a complex set of cellular trans-acting proteins. Biochem J. 2002 Jul 15;365(Pt 2):417–428. doi: 10.1042/BJ20011726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roche E., Assimacopoulos-Jeannet F., Witters L. A., Perruchoud B., Yaney G., Corkey B., Asfari M., Prentki M. Induction by glucose of genes coding for glycolytic enzymes in a pancreatic beta-cell line (INS-1). J Biol Chem. 1997 Jan 31;272(5):3091–3098. doi: 10.1074/jbc.272.5.3091. [DOI] [PubMed] [Google Scholar]
- Scarpulla Richard C. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002 Jun 7;1576(1-2):1–14. doi: 10.1016/s0167-4781(02)00343-3. [DOI] [PubMed] [Google Scholar]
- Scarpulla Richard C. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene. 2002 Mar 6;286(1):81–89. doi: 10.1016/s0378-1119(01)00809-5. [DOI] [PubMed] [Google Scholar]
- Valcarce C., Navarrete R. M., Encabo P., Loeches E., Satrústegui J., Cuezva J. M. Postnatal development of rat liver mitochondrial functions. The roles of protein synthesis and of adenine nucleotides. J Biol Chem. 1988 Jun 5;263(16):7767–7775. [PubMed] [Google Scholar]
- Wulfkuhle Julia D., Liotta Lance A., Petricoin Emanuel F. Proteomic applications for the early detection of cancer. Nat Rev Cancer. 2003 Apr;3(4):267–275. doi: 10.1038/nrc1043. [DOI] [PubMed] [Google Scholar]
- Yoshida M., Muneyuki E., Hisabori T. ATP synthase--a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol. 2001 Sep;2(9):669–677. doi: 10.1038/35089509. [DOI] [PubMed] [Google Scholar]
- de Heredia M. L., Izquierdo J. M., Cuezva J. M. A conserved mechanism for controlling the translation of beta-F1-ATPase mRNA between the fetal liver and cancer cells. J Biol Chem. 2000 Mar 10;275(10):7430–7437. doi: 10.1074/jbc.275.10.7430. [DOI] [PubMed] [Google Scholar]