Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 1;378(Pt 2):391–397. doi: 10.1042/BJ20030741

Influence of a mutation in the ATP-binding region of Ca2+/calmodulin-dependent protein kinase II on its interaction with peptide substrates.

Mullasseril Praseeda 1, Kurup K Pradeep 1, Ananth Krupa 1, S Sri Krishna 1, Suseela Leena 1, R Rajeev Kumar 1, John Cheriyan 1, Madhavan Mayadevi 1, Narayanaswamy Srinivasan 1, Ramakrishnapillai V Omkumar 1
PMCID: PMC1223949  PMID: 14558884

Abstract

CaMKII (Ca2+/calmodulin-dependent protein kinase II) is expressed in high concentrations in the brain and is found enriched in the postsynaptic densities. The enzyme is activated by the binding of calmodulin to the autoregulatory domain in the presence of high levels of intracellular Ca2+, which causes removal of auto-inhibition from the N-terminal catalytic domain. Knowledge of the 3D (three-dimensional) structure of this enzyme at atomic resolution is restricted to the association domain, a region at the extreme C-terminus. The catalytic domain of CaMKII shares high sequence similarity with CaMKI. The 3D structure of the catalytic core of CaMKI comprises ATP- and substrate-binding regions in a cleft between two distinct lobes, similar to the structures of all protein kinases solved to date. Mutation of Glu-60, a residue in the ATP-binding region of CaMKII, to glycine exerts different effects on phosphorylation of two peptide substrates, syntide and NR2B ( N -methyl-D-aspartate receptor subunit 2B) 17-mer. Although the mutation caused increases in the Km values for phosphorylation for both the peptide substrates, the effect on the kcat values for each was different. The kcat value decreased in the case of syntide, whereas it increased in the case of the NR2B peptide as a result of the mutation. This resulted in a significant decrease in the apparent kcat/Km value for syntide, but the change was minimal for the NR2B peptide. These results indicate that different catalytic mechanisms are employed by the kinase for the two peptides. Molecular modelling suggests structural changes are likely to occur at the peptide-binding pocket in the active state of the enzyme as a consequence of the Glu-60-->Gly mutation.

Full Text

The Full Text of this article is available as a PDF (209.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayer K. U., De Koninck P., Leonard A. S., Hell J. W., Schulman H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature. 2001 Jun 14;411(6839):801–805. doi: 10.1038/35081080. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Cruzalegui F. H., Kapiloff M. S., Morfin J. P., Kemp B. E., Rosenfeld M. G., Means A. R. Regulation of intrasteric inhibition of the multifunctional calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12127–12131. doi: 10.1073/pnas.89.24.12127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  5. Gardoni F., Caputi A., Cimino M., Pastorino L., Cattabeni F., Di Luca M. Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J Neurochem. 1998 Oct;71(4):1733–1741. doi: 10.1046/j.1471-4159.1998.71041733.x. [DOI] [PubMed] [Google Scholar]
  6. Gibbs C. S., Zoller M. J. Rational scanning mutagenesis of a protein kinase identifies functional regions involved in catalysis and substrate interactions. J Biol Chem. 1991 May 15;266(14):8923–8931. [PubMed] [Google Scholar]
  7. Goldberg J., Nairn A. C., Kuriyan J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell. 1996 Mar 22;84(6):875–887. doi: 10.1016/s0092-8674(00)81066-1. [DOI] [PubMed] [Google Scholar]
  8. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  9. Hashimoto Y., Soderling T. R. Calcium . calmodulin-dependent protein kinase II and calcium . phospholipid-dependent protein kinase activities in rat tissues assayed with a synthetic peptide. Arch Biochem Biophys. 1987 Feb 1;252(2):418–425. doi: 10.1016/0003-9861(87)90048-8. [DOI] [PubMed] [Google Scholar]
  10. Hoelz André, Nairn Angus C., Kuriyan John. Crystal structure of a tetradecameric assembly of the association domain of Ca2+/calmodulin-dependent kinase II. Mol Cell. 2003 May;11(5):1241–1251. doi: 10.1016/s1097-2765(03)00171-0. [DOI] [PubMed] [Google Scholar]
  11. Hudmon Andy, Schulman Howard. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem. 2001 Nov 9;71:473–510. doi: 10.1146/annurev.biochem.71.110601.135410. [DOI] [PubMed] [Google Scholar]
  12. Hudmon Andy, Schulman Howard. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J. 2002 Jun 15;364(Pt 3):593–611. doi: 10.1042/BJ20020228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knighton D. R., Zheng J. H., Ten Eyck L. F., Ashford V. A., Xuong N. H., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):407–414. doi: 10.1126/science.1862342. [DOI] [PubMed] [Google Scholar]
  14. Knighton D. R., Zheng J. H., Ten Eyck L. F., Xuong N. H., Taylor S. S., Sowadski J. M. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):414–420. doi: 10.1126/science.1862343. [DOI] [PubMed] [Google Scholar]
  15. Kolodziej S. J., Hudmon A., Waxham M. N., Stoops J. K. Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase IIalpha and truncated CaM kinase IIalpha reveal a unique organization for its structural core and functional domains. J Biol Chem. 2000 May 12;275(19):14354–14359. doi: 10.1074/jbc.275.19.14354. [DOI] [PubMed] [Google Scholar]
  16. Kumar K. S., Rajasekharan Pillai V. N., Das M. R. Syntheses of four peptides from the immunodominant region of hepatitis C viral pathogens using PS-TTEGDA support for the investigation of HCV infection in human blood. J Pept Res. 2000 Aug;56(2):88–96. doi: 10.1034/j.1399-3011.2000.00731.x. [DOI] [PubMed] [Google Scholar]
  17. Kwiatkowski A. P., Huang C. Y., King M. M. Kinetic mechanism of the type II calmodulin-dependent protein kinase: studies of the forward and reverse reactions and observation of apparent rapid-equilibrium ordered binding. Biochemistry. 1990 Jan 9;29(1):153–159. doi: 10.1021/bi00453a019. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Leena S., Kumar K. S. Syntheses, characterization and application of cross-linked polystyrene-ethyleneglycol acrylate resin (CLPSER) as a novel polymer support for polypeptide syntheses. J Pept Res. 2001 Aug;58(2):117–128. doi: 10.1034/j.1399-3011.2001.00877.x. [DOI] [PubMed] [Google Scholar]
  20. Leonard A. S., Lim I. A., Hemsworth D. E., Horne M. C., Hell J. W. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3239–3244. doi: 10.1073/pnas.96.6.3239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mayadevi M., Praseeda M., Kumar K. S., Omkumar R. V. Sequence determinants on the NR2A and NR2B subunits of NMDA receptor responsible for specificity of phosphorylation by CaMKII. Biochim Biophys Acta. 2002 Jul 29;1598(1-2):40–45. doi: 10.1016/s0167-4838(02)00315-1. [DOI] [PubMed] [Google Scholar]
  22. Miller S. G., Kennedy M. B. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell. 1986 Mar 28;44(6):861–870. doi: 10.1016/0092-8674(86)90008-5. [DOI] [PubMed] [Google Scholar]
  23. Omkumar R. V., Kiely M. J., Rosenstein A. J., Min K. T., Kennedy M. B. Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 1996 Dec 6;271(49):31670–31678. doi: 10.1074/jbc.271.49.31670. [DOI] [PubMed] [Google Scholar]
  24. Pearson R. B., Woodgett J. R., Cohen P., Kemp B. E. Substrate specificity of a multifunctional calmodulin-dependent protein kinase. J Biol Chem. 1985 Nov 25;260(27):14471–14476. [PubMed] [Google Scholar]
  25. Sali A., Blundell T. L. Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. J Mol Biol. 1990 Mar 20;212(2):403–428. doi: 10.1016/0022-2836(90)90134-8. [DOI] [PubMed] [Google Scholar]
  26. Singla S. I., Hudmon A., Goldberg J. M., Smith J. L., Schulman H. Molecular characterization of calmodulin trapping by calcium/calmodulin-dependent protein kinase II. J Biol Chem. 2001 May 30;276(31):29353–29360. doi: 10.1074/jbc.M101744200. [DOI] [PubMed] [Google Scholar]
  27. Songyang Z., Lu K. P., Kwon Y. T., Tsai L. H., Filhol O., Cochet C., Brickey D. A., Soderling T. R., Bartleson C., Graves D. J. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol. 1996 Nov;16(11):6486–6493. doi: 10.1128/mcb.16.11.6486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Srinivasan N., Antonelli M., Jacob G., Korn I., Romero F., Jedlicki A., Dhanaraj V., Sayed M. F., Blundell T. L., Allende C. C. Structural interpretation of site-directed mutagenesis and specificity of the catalytic subunit of protein kinase CK2 using comparative modelling. Protein Eng. 1999 Feb;12(2):119–127. doi: 10.1093/protein/12.2.119. [DOI] [PubMed] [Google Scholar]
  29. Srinivasan N., Bax B., Blundell T. L., Parker P. J. Structural aspects of the functional modules in human protein kinase-C alpha deduced from comparative analyses. Proteins. 1996 Oct;26(2):217–235. doi: 10.1002/(SICI)1097-0134(199610)26:2<217::AID-PROT11>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  30. Srinivasan N., Blundell T. L. An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng. 1993 Jul;6(5):501–512. doi: 10.1093/protein/6.5.501. [DOI] [PubMed] [Google Scholar]
  31. Strack S., Colbran R. J. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem. 1998 Aug 14;273(33):20689–20692. doi: 10.1074/jbc.273.33.20689. [DOI] [PubMed] [Google Scholar]
  32. Strack S., McNeill R. B., Colbran R. J. Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 2000 Aug 4;275(31):23798–23806. doi: 10.1074/jbc.M001471200. [DOI] [PubMed] [Google Scholar]
  33. Sutcliffe M. J., Hayes F. R., Blundell T. L. Knowledge based modelling of homologous proteins, Part II: Rules for the conformations of substituted sidechains. Protein Eng. 1987 Oct-Nov;1(5):385–392. doi: 10.1093/protein/1.5.385. [DOI] [PubMed] [Google Scholar]
  34. Topham C. M., McLeod A., Eisenmenger F., Overington J. P., Johnson M. S., Blundell T. L. Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. J Mol Biol. 1993 Jan 5;229(1):194–220. doi: 10.1006/jmbi.1993.1018. [DOI] [PubMed] [Google Scholar]
  35. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Török K., Tzortzopoulos A., Grabarek Z., Best S. L., Thorogate R. Dual effect of ATP in the activation mechanism of brain Ca(2+)/calmodulin-dependent protein kinase II by Ca(2+)/calmodulin. Biochemistry. 2001 Dec 11;40(49):14878–14890. doi: 10.1021/bi010920+. [DOI] [PubMed] [Google Scholar]
  37. White R. R., Kwon Y. G., Taing M., Lawrence D. S., Edelman A. M. Definition of optimal substrate recognition motifs of Ca2+-calmodulin-dependent protein kinases IV and II reveals shared and distinctive features. J Biol Chem. 1998 Feb 6;273(6):3166–3172. doi: 10.1074/jbc.273.6.3166. [DOI] [PubMed] [Google Scholar]
  38. Yang E., Schulman H. Structural examination of autoregulation of multifunctional calcium/calmodulin-dependent protein kinase II. J Biol Chem. 1999 Sep 10;274(37):26199–26208. doi: 10.1074/jbc.274.37.26199. [DOI] [PubMed] [Google Scholar]
  39. Zheng J., Knighton D. R., ten Eyck L. F., Karlsson R., Xuong N., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry. 1993 Mar 9;32(9):2154–2161. doi: 10.1021/bi00060a005. [DOI] [PubMed] [Google Scholar]
  40. Zhu Z. Y., Sali A., Blundell T. L. A variable gap penalty function and feature weights for protein 3-D structure comparisons. Protein Eng. 1992 Jan;5(1):43–51. doi: 10.1093/protein/5.1.43. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES