Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 1;378(Pt 2):473–484. doi: 10.1042/BJ20031022

Stimulated initiation of mitogen-activated protein kinase phosphatase-1 (MKP-1) gene transcription involves the synergistic action of multiple cis-acting elements in the proximal promoter.

Stephan Ryser 1, Abbas Massiha 1, Isabelle Piuz 1, Werner Schlegel 1
PMCID: PMC1223957  PMID: 14609431

Abstract

Mitogen-activated protein kinases (MAPKs) are inactivated by a dual specificity phosphatase, MAPK phosphatase-1 (MKP-1). MKP-1 is transcribed as an immediate early response gene (IEG) following various stimuli. In the pituitary cell line GH4C1, MKP-1 gene transcription is strongly induced by thyrotropin-releasing hormone (TRH) as well as by epidermal growth factor (EGF) as a consequence of activated MAPK/extracellular-signal-regulated kinase (ERK) signalling. Intriguingly, reporter gene analysis with the MKP-1 promoter showed strong basal transcription, but only limited induction by TRH and EGF. Site-directed mutagenesis of the reporter construct combined with band-shift and in vivo studies revealed that part of the constitutive activity of the MKP-1 promoter resides in two GC boxes bound by Sp1 and Sp3 transcription factors in the minimal promoter. Basal transcription of transiently transfected luciferase reporter can be initiated by either of the two GC boxes or also by either of the two cAMP/Ca(2+) responsive elements or by the E-box present in the proximal promoter. On the other hand, when analysed by stable transfection, the five responsive elements are acting in synergy to transactivate the MKP-1 proximal promoter. We show in this study that the MKP-1 promoter can function as a constitutive promoter or as a rapid and transient sensor for the activation state of MAPKs/ERKs. This dual mode of transcription initiation may have different consequences for the control of a block to elongation situated in the first exon of the MKP-1 gene, as described previously [Ryser, Tortola, van Haasteren, Muda, Li and Schlegel (2001) J. Biol. Chem. 276, 33319-33327].

Full Text

The Full Text of this article is available as a PDF (331.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert T., Wells J., Funk J. O., Pullner A., Raschke E. E., Stelzer G., Meisterernst M., Farnham P. J., Eick D. The chromatin structure of the dual c-myc promoter P1/P2 is regulated by separate elements. J Biol Chem. 2001 Feb 20;276(23):20482–20490. doi: 10.1074/jbc.M100265200. [DOI] [PubMed] [Google Scholar]
  2. Andrews N. C., Faller D. V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991 May 11;19(9):2499–2499. doi: 10.1093/nar/19.9.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aratani S., Fujii R., Oishi T., Fujita H., Amano T., Ohshima T., Hagiwara M., Fukamizu A., Nakajima T. Dual roles of RNA helicase A in CREB-dependent transcription. Mol Cell Biol. 2001 Jul;21(14):4460–4469. doi: 10.1128/MCB.21.14.4460-4469.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhalla Upinder S., Ram Prahlad T., Iyengar Ravi. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science. 2002 Aug 9;297(5583):1018–1023. doi: 10.1126/science.1068873. [DOI] [PubMed] [Google Scholar]
  5. Blau J., Xiao H., McCracken S., O'Hare P., Greenblatt J., Bentley D. Three functional classes of transcriptional activation domain. Mol Cell Biol. 1996 May;16(5):2044–2055. doi: 10.1128/mcb.16.5.2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brondello J. M., Pouysségur J., McKenzie F. R. Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science. 1999 Dec 24;286(5449):2514–2517. doi: 10.1126/science.286.5449.2514. [DOI] [PubMed] [Google Scholar]
  7. Bueno O. F., De Windt L. J., Lim H. W., Tymitz K. M., Witt S. A., Kimball T. R., Molkentin J. D. The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ Res. 2001 Jan 19;88(1):88–96. doi: 10.1161/01.res.88.1.88. [DOI] [PubMed] [Google Scholar]
  8. Camps M., Nichols A., Arkinstall S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 2000 Jan;14(1):6–16. [PubMed] [Google Scholar]
  9. Camps M., Nichols A., Gillieron C., Antonsson B., Muda M., Chabert C., Boschert U., Arkinstall S. Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science. 1998 May 22;280(5367):1262–1265. doi: 10.1126/science.280.5367.1262. [DOI] [PubMed] [Google Scholar]
  10. Charles C. H., Abler A. S., Lau L. F. cDNA sequence of a growth factor-inducible immediate early gene and characterization of its encoded protein. Oncogene. 1992 Jan;7(1):187–190. [PubMed] [Google Scholar]
  11. Chiang C. M., Roeder R. G. Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science. 1995 Jan 27;267(5197):531–536. doi: 10.1126/science.7824954. [DOI] [PubMed] [Google Scholar]
  12. Cho H., Orphanides G., Sun X., Yang X. J., Ogryzko V., Lees E., Nakatani Y., Reinberg D. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol. 1998 Sep;18(9):5355–5363. doi: 10.1128/mcb.18.9.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Conaway J. W., Shilatifard A., Dvir A., Conaway R. C. Control of elongation by RNA polymerase II. Trends Biochem Sci. 2000 Aug;25(8):375–380. doi: 10.1016/s0968-0004(00)01615-7. [DOI] [PubMed] [Google Scholar]
  14. Cullen Peter J., Lockyer Peter J. Integration of calcium and Ras signalling. Nat Rev Mol Cell Biol. 2002 May;3(5):339–348. doi: 10.1038/nrm808. [DOI] [PubMed] [Google Scholar]
  15. De Cesare D., Fimia G. M., Sassone-Corsi P. Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends Biochem Sci. 1999 Jul;24(7):281–285. doi: 10.1016/s0968-0004(99)01414-0. [DOI] [PubMed] [Google Scholar]
  16. De Windt L. J., Lim H. W., Bueno O. F., Liang Q., Delling U., Braz J. C., Glascock B. J., Kimball T. F., del Monte F., Hajjar R. J. Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3322–3327. doi: 10.1073/pnas.031371998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dennig J., Beato M., Suske G. An inhibitor domain in Sp3 regulates its glutamine-rich activation domains. EMBO J. 1996 Oct 15;15(20):5659–5667. [PMC free article] [PubMed] [Google Scholar]
  18. Felinski E. A., Quinn P. G. The coactivator dTAF(II)110/hTAF(II)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB. Proc Natl Acad Sci U S A. 2001 Oct 30;98(23):13078–13083. doi: 10.1073/pnas.241337698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fivaz J., Bassi M. C., Pinaud S., Mirkovitch J. RNA polymerase II promoter-proximal pausing upregulates c-fos gene expression. Gene. 2000 Sep 19;255(2):185–194. doi: 10.1016/s0378-1119(00)00340-1. [DOI] [PubMed] [Google Scholar]
  20. Gerber H. P., Hagmann M., Seipel K., Georgiev O., West M. A., Litingtung Y., Schaffner W., Corden J. L. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature. 1995 Apr 13;374(6523):660–662. doi: 10.1038/374660a0. [DOI] [PubMed] [Google Scholar]
  21. Grimshaw M. J., Balkwill F. R. Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation--a potential mechanism. Eur J Immunol. 2001 Feb;31(2):480–489. doi: 10.1002/1521-4141(200102)31:2<480::aid-immu480>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  22. Guo Y. L., Kang B., Williamson J. R. Inhibition of the expression of mitogen-activated protein phosphatase-1 potentiates apoptosis induced by tumor necrosis factor-alpha in rat mesangial cells. J Biol Chem. 1998 Apr 24;273(17):10362–10366. doi: 10.1074/jbc.273.17.10362. [DOI] [PubMed] [Google Scholar]
  23. Hazzalin Catherine A., Mahadevan Louis C. MAPK-regulated transcription: a continuously variable gene switch? Nat Rev Mol Cell Biol. 2002 Jan;3(1):30–40. doi: 10.1038/nrm715. [DOI] [PubMed] [Google Scholar]
  24. Hutter D., Chen P., Barnes J., Liu Y. Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation. Biochem J. 2000 Nov 15;352(Pt 1):155–163. [PMC free article] [PubMed] [Google Scholar]
  25. Kassel O., Sancono A., Krätzschmar J., Kreft B., Stassen M., Cato A. C. Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 2001 Dec 17;20(24):7108–7116. doi: 10.1093/emboj/20.24.7108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kennett Sarah B., Moorefield K. Scott, Horowitz Jonathan M. Sp3 represses gene expression via the titration of promoter-specific transcription factors. J Biol Chem. 2001 Dec 28;277(12):9780–9789. doi: 10.1074/jbc.M108661200. [DOI] [PubMed] [Google Scholar]
  27. Keyse S. M., Emslie E. A. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature. 1992 Oct 15;359(6396):644–647. doi: 10.1038/359644a0. [DOI] [PubMed] [Google Scholar]
  28. Keyse S. M. Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol. 2000 Apr;12(2):186–192. doi: 10.1016/s0955-0674(99)00075-7. [DOI] [PubMed] [Google Scholar]
  29. Kwak S. P., Hakes D. J., Martell K. J., Dixon J. E. Isolation and characterization of a human dual specificity protein-tyrosine phosphatase gene. J Biol Chem. 1994 Feb 4;269(5):3596–3604. [PubMed] [Google Scholar]
  30. Laderoute K. R., Mendonca H. L., Calaoagan J. M., Knapp A. M., Giaccia A. J., Stork P. J. Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. J Biol Chem. 1999 Apr 30;274(18):12890–12897. doi: 10.1074/jbc.274.18.12890. [DOI] [PubMed] [Google Scholar]
  31. Li J., Gorospe M., Hutter D., Barnes J., Keyse S. M., Liu Y. Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation-acetylation. Mol Cell Biol. 2001 Dec;21(23):8213–8224. doi: 10.1128/MCB.21.23.8213-8224.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lis J. Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. Cold Spring Harb Symp Quant Biol. 1998;63:347–356. doi: 10.1101/sqb.1998.63.347. [DOI] [PubMed] [Google Scholar]
  33. Majello B., De Luca P., Lania L. Sp3 is a bifunctional transcription regulator with modular independent activation and repression domains. J Biol Chem. 1997 Feb 14;272(7):4021–4026. doi: 10.1074/jbc.272.7.4021. [DOI] [PubMed] [Google Scholar]
  34. Orlando V., Strutt H., Paro R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods. 1997 Feb;11(2):205–214. doi: 10.1006/meth.1996.0407. [DOI] [PubMed] [Google Scholar]
  35. Orphanides G., Reinberg D. RNA polymerase II elongation through chromatin. Nature. 2000 Sep 28;407(6803):471–475. doi: 10.1038/35035000. [DOI] [PubMed] [Google Scholar]
  36. Pfeifer G. P., Steigerwald S. D., Mueller P. R., Wold B., Riggs A. D. Genomic sequencing and methylation analysis by ligation mediated PCR. Science. 1989 Nov 10;246(4931):810–813. doi: 10.1126/science.2814502. [DOI] [PubMed] [Google Scholar]
  37. Pinaud S., Mirkovitch J. Regulation of c-fos expression by RNA polymerase elongation competence. J Mol Biol. 1998 Jul 31;280(5):785–798. doi: 10.1006/jmbi.1998.1905. [DOI] [PubMed] [Google Scholar]
  38. Ryser S., Tortola S., van Haasteren G., Muda M., Li S., Schlegel W. MAP kinase phosphatase-1 gene transcription in rat neuroendocrine cells is modulated by a calcium-sensitive block to elongation in the first exon. J Biol Chem. 2001 Jun 22;276(36):33319–33327. doi: 10.1074/jbc.M102326200. [DOI] [PubMed] [Google Scholar]
  39. Ryser Stephan, Tortola Silvia, Schlegel Werner. Map kinase phosphatase-1 gene expression and regulation in neuroendocrine cells. J Recept Signal Transduct Res. 2002 Feb-Nov;22(1-4):17–29. doi: 10.1081/rrs-120014586. [DOI] [PubMed] [Google Scholar]
  40. Saxena M., Mustelin T. Extracellular signals and scores of phosphatases: all roads lead to MAP kinase. Semin Immunol. 2000 Aug;12(4):387–396. doi: 10.1006/smim.2000.0219. [DOI] [PubMed] [Google Scholar]
  41. Schaeffer H. J., Weber M. J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol. 1999 Apr;19(4):2435–2444. doi: 10.1128/mcb.19.4.2435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sommer A., Burkhardt H., Keyse S. M., Lüscher B. Synergistic activation of the mkp-1 gene by protein kinase A signaling and USF, but not c-Myc. FEBS Lett. 2000 Jun 2;474(2-3):146–150. doi: 10.1016/s0014-5793(00)01566-0. [DOI] [PubMed] [Google Scholar]
  43. Soutoglou E., Viollet B., Vaxillaire M., Yaniv M., Pontoglio M., Talianidis I. Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO J. 2001 Apr 17;20(8):1984–1992. doi: 10.1093/emboj/20.8.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wang Hsien-yu, Cheng Zhiyong, Malbon Craig C. Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett. 2003 Mar 10;191(2):229–237. doi: 10.1016/s0304-3835(02)00612-2. [DOI] [PubMed] [Google Scholar]
  45. Wetzker Reinhard, Böhmer Frank-D. Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol. 2003 Aug;4(8):651–657. doi: 10.1038/nrm1173. [DOI] [PubMed] [Google Scholar]
  46. Wolf D. A., Strobl L. J., Pullner A., Eick D. Variable pause positions of RNA polymerase II lie proximal to the c-myc promoter irrespective of transcriptional activity. Nucleic Acids Res. 1995 Sep 11;23(17):3373–3379. doi: 10.1093/nar/23.17.3373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Xu Qihe, Konta Tsuneo, Furusu Akira, Nakayama Kenji, Lucio-Cazana Javier, Fine Leon G., Kitamura Masanori. Transcriptional induction of mitogen-activated protein kinase phosphatase 1 by retinoids. Selective roles of nuclear receptors and contribution to the antiapoptotic effect. J Biol Chem. 2002 Aug 16;277(44):41693–41700. doi: 10.1074/jbc.M207095200. [DOI] [PubMed] [Google Scholar]
  48. van Haasteren G., Li S., Ryser S., Schlegel W. Essential contribution of intron sequences to Ca(2+)-dependent activation of c-fos transcription in pituitary cells. Neuroendocrinology. 2000 Dec;72(6):368–378. doi: 10.1159/000054606. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES