Abstract
The molecular mechanism involved in the liganded thyroid hormone receptor suppression of the TSHbeta (thyroid-stimulating hormone beta, or thyrotropin beta) gene transcription is undetermined. One of the main reasons is the limitation of useful cell lines for the experiments. We have developed an assay system using non-pituitary CV1 cells and studied the negative regulation of the TSHbeta gene. In CV1 cells, the TSHbeta-CAT (chloramphenicol acetyltransferase) reporter was stimulated by Pit1 and GATA2 and suppressed by T3 (3,3',5-tri-iodothyronine)-bound thyroid hormone receptor. The suppression was dependent on the amounts of T3 and the receptor. Unliganded receptor did not stimulate TSHbeta activity, suggesting that the receptor itself is not an activator. Analyses using various receptor mutants revealed that the intact DNA-binding domain is crucial to the TSHbeta gene suppression. Co-activators and co-repressors are not necessarily essential, but are required for the full suppression of the TSHbeta gene. Among the three receptor isoforms, beta2 exhibited the strongest inhibition and its protein level was the most predominant in a thyrotroph cell line, TalphaT1, in Western blotting. The dominant-negative effects of various receptor mutants measured on the TSHbeta-CAT reporter were not simple mirror images of those in the positive regulation under physiological T3 concentration.
Full Text
The Full Text of this article is available as a PDF (278.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abel E. D., Boers M. E., Pazos-Moura C., Moura E., Kaulbach H., Zakaria M., Lowell B., Radovick S., Liberman M. C., Wondisford F. Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J Clin Invest. 1999 Aug;104(3):291–300. doi: 10.1172/JCI6397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ando S., Nakamura H., Sasaki S., Nishiyama K., Kitahara A., Nagasawa S., Mikami T., Natsume H., Genma R., Yoshimi T. Introducing a point mutation identified in a patient with pituitary resistance to thyroid hormone (Arg 338 to Trp) into other mutant thyroid hormone receptors weakens their dominant negative activities. J Endocrinol. 1996 Nov;151(2):293–300. doi: 10.1677/joe.0.1510293. [DOI] [PubMed] [Google Scholar]
- Blobel G. A., Orkin S. H. Estrogen-induced apoptosis by inhibition of the erythroid transcription factor GATA-1. Mol Cell Biol. 1996 Apr;16(4):1687–1694. doi: 10.1128/mcb.16.4.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodenner D. L., Mroczynski M. A., Weintraub B. D., Radovick S., Wondisford F. E. A detailed functional and structural analysis of a major thyroid hormone inhibitory element in the human thyrotropin beta-subunit gene. J Biol Chem. 1991 Nov 15;266(32):21666–21673. [PubMed] [Google Scholar]
- Carr F. E., Kaseem L. L., Wong N. C. Thyroid hormone inhibits thyrotropin gene expression via a position-independent negative L-triiodothyronine-responsive element. J Biol Chem. 1992 Sep 15;267(26):18689–18694. [PubMed] [Google Scholar]
- Chang T. J., Scher B. M., Waxman S., Scher W. Inhibition of mouse GATA-1 function by the glucocorticoid receptor: possible mechanism of steroid inhibition of erythroleukemia cell differentiation. Mol Endocrinol. 1993 Apr;7(4):528–542. doi: 10.1210/mend.7.4.8502237. [DOI] [PubMed] [Google Scholar]
- Chatterjee V. K., Lee J. K., Rentoumis A., Jameson J. L. Negative regulation of the thyroid-stimulating hormone alpha gene by thyroid hormone: receptor interaction adjacent to the TATA box. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9114–9118. doi: 10.1073/pnas.86.23.9114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Childs G. V., Taub K., Jones K. E., Chin W. W. Triiodothyronine receptor beta-2 messenger ribonucleic acid expression by somatotropes and thyrotropes: effect of propylthiouracil-induced hypothyroidism in rats. Endocrinology. 1991 Nov;129(5):2767–2773. doi: 10.1210/endo-129-5-2767. [DOI] [PubMed] [Google Scholar]
- Cohen O., Flynn T. R., Wondisford F. E. Ligand-dependent antagonism by retinoid X receptors of inhibitory thyroid hormone response elements. J Biol Chem. 1995 Jun 9;270(23):13899–13905. doi: 10.1074/jbc.270.23.13899. [DOI] [PubMed] [Google Scholar]
- Cook C. B., Kakucska I., Lechan R. M., Koenig R. J. Expression of thyroid hormone receptor beta 2 in rat hypothalamus. Endocrinology. 1992 Feb;130(2):1077–1079. doi: 10.1210/endo.130.2.1733708. [DOI] [PubMed] [Google Scholar]
- Dasen J. S., O'Connell S. M., Flynn S. E., Treier M., Gleiberman A. S., Szeto D. P., Hooshmand F., Aggarwal A. K., Rosenfeld M. G. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell. 1999 May 28;97(5):587–598. doi: 10.1016/s0092-8674(00)80770-9. [DOI] [PubMed] [Google Scholar]
- Feng X., Jiang Y., Meltzer P., Yen P. M. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol. 2000 Jul;14(7):947–955. doi: 10.1210/mend.14.7.0470. [DOI] [PubMed] [Google Scholar]
- Forrest D., Hanebuth E., Smeyne R. J., Everds N., Stewart C. L., Wehner J. M., Curran T. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J. 1996 Jun 17;15(12):3006–3015. [PMC free article] [PubMed] [Google Scholar]
- Glass C. K., Rosenfeld M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000 Jan 15;14(2):121–141. [PubMed] [Google Scholar]
- Gordon D. F., Lewis S. R., Haugen B. R., James R. A., McDermott M. T., Wood W. M., Ridgway E. C. Pit-1 and GATA-2 interact and functionally cooperate to activate the thyrotropin beta-subunit promoter. J Biol Chem. 1997 Sep 26;272(39):24339–24347. doi: 10.1074/jbc.272.39.24339. [DOI] [PubMed] [Google Scholar]
- Göthe S., Wang Z., Ng L., Kindblom J. M., Barros A. C., Ohlsson C., Vennström B., Forrest D. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev. 1999 May 15;13(10):1329–1341. doi: 10.1101/gad.13.10.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodin R. A., Lazar M. A., Wintman B. I., Darling D. S., Koenig R. J., Larsen P. R., Moore D. D., Chin W. W. Identification of a thyroid hormone receptor that is pituitary-specific. Science. 1989 Apr 7;244(4900):76–79. doi: 10.1126/science.2539642. [DOI] [PubMed] [Google Scholar]
- Hörlein A. J., När A. M., Heinzel T., Torchia J., Gloss B., Kurokawa R., Ryan A., Kamei Y., Söderström M., Glass C. K. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995 Oct 5;377(6548):397–404. doi: 10.1038/377397a0. [DOI] [PubMed] [Google Scholar]
- Langlois M. F., Zanger K., Monden T., Safer J. D., Hollenberg A. N., Wondisford F. E. A unique role of the beta-2 thyroid hormone receptor isoform in negative regulation by thyroid hormone. Mapping of a novel amino-terminal domain important for ligand-independent activation. J Biol Chem. 1997 Oct 3;272(40):24927–24933. doi: 10.1074/jbc.272.40.24927. [DOI] [PubMed] [Google Scholar]
- Lazar M. A. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993 Apr;14(2):184–193. doi: 10.1210/edrv-14-2-184. [DOI] [PubMed] [Google Scholar]
- Maia A. L., Harney J. W., Larsen P. R. Is there a negative TRE in the luciferase reporter cDNA? Thyroid. 1996 Aug;6(4):325–328. doi: 10.1089/thy.1996.6.325. [DOI] [PubMed] [Google Scholar]
- Marimuthu Adhirai, Feng Weijun, Tagami Tetsuya, Nguyen Hoa, Jameson J. Larry, Fletterick Robert J., Baxter John D., West Brian L. TR surfaces and conformations required to bind nuclear receptor corepressor. Mol Endocrinol. 2002 Feb;16(2):271–286. doi: 10.1210/mend.16.2.0777. [DOI] [PubMed] [Google Scholar]
- Matsushita A., Misawa H., Andoh S., Natsume H., Nishiyama K., Sasaki S., Nakamura H. Very strong correlation between dominant negative activities of mutant thyroid hormone receptors and their binding avidity for corepressor SMRT. J Endocrinol. 2000 Dec;167(3):493–503. doi: 10.1677/joe.0.1670493. [DOI] [PubMed] [Google Scholar]
- Miyoshi Y., Nakamura H., Sasaki S., Tagami T., Misaki T., Konishi J., Nakao K. Two consecutive nucleotide substitutions resulting in the T3 receptor beta gene resulting in an 11-amino acid truncation in a patient with generalized resistance to thyroid hormone. Mol Cell Endocrinol. 1995 Oct 30;114(1-2):9–17. doi: 10.1016/0303-7207(95)03636-l. [DOI] [PubMed] [Google Scholar]
- Miyoshi Y., Nakamura H., Tagami T., Sasaki S., Dorin R. I., Taniyama M., Nakao K. Comparison of the functional properties of three different truncated thyroid hormone receptors identified in subjects with resistance to thyroid hormone. Mol Cell Endocrinol. 1998 Feb;137(2):169–176. doi: 10.1016/s0303-7207(97)00244-x. [DOI] [PubMed] [Google Scholar]
- Nagaya T., Fujieda M., Seo H. Requirement of corepressor binding of thyroid hormone receptor mutants for dominant negative inhibition. Biochem Biophys Res Commun. 1998 Jun 29;247(3):620–623. doi: 10.1006/bbrc.1998.8854. [DOI] [PubMed] [Google Scholar]
- Nagaya T., Madison L. D., Jameson J. L. Thyroid hormone receptor mutants that cause resistance to thyroid hormone. Evidence for receptor competition for DNA sequences in target genes. J Biol Chem. 1992 Jun 25;267(18):13014–13019. [PubMed] [Google Scholar]
- Nishiyama K., Matsushita A., Natsume H., Mikami T., Genma R., Sasaki S., Nakamura H. Differences between the silencing-related properties of the extreme carboxyl-terminal regions of thyroid hormone receptors alpha 1 and beta 1. J Endocrinol. 2000 Nov;167(2):219–227. doi: 10.1677/joe.0.1670219. [DOI] [PubMed] [Google Scholar]
- Palomino T., Sánchez-Pacheco A., Peña P., Aranda A. A direct protein-protein interaction is involved in the cooperation between thyroid hormone and retinoic acid receptors and the transcription factor GHF-1. FASEB J. 1998 Sep;12(12):1201–1209. doi: 10.1096/fasebj.12.12.1201. [DOI] [PubMed] [Google Scholar]
- Refetoff S., Weiss R. E., Usala S. J. The syndromes of resistance to thyroid hormone. Endocr Rev. 1993 Jun;14(3):348–399. doi: 10.1210/edrv-14-3-348. [DOI] [PubMed] [Google Scholar]
- Safer J. D., Langlois M. F., Cohen R., Monden T., John-Hope D., Madura J., Hollenberg A. N., Wondisford F. E. Isoform variable action among thyroid hormone receptor mutants provides insight into pituitary resistance to thyroid hormone. Mol Endocrinol. 1997 Jan;11(1):16–26. doi: 10.1210/mend.11.1.9867. [DOI] [PubMed] [Google Scholar]
- Sakurai A., Nakai A., DeGroot L. J. Structural analysis of human thyroid hormone receptor beta gene. Mol Cell Endocrinol. 1990 Jun 18;71(2):83–91. doi: 10.1016/0303-7207(90)90245-4. [DOI] [PubMed] [Google Scholar]
- Samuels H. H., Stanley F., Casanova J. Depletion of L-3,5,3'-triiodothyronine and L-thyroxine in euthyroid calf serum for use in cell culture studies of the action of thyroid hormone. Endocrinology. 1979 Jul;105(1):80–85. doi: 10.1210/endo-105-1-80. [DOI] [PubMed] [Google Scholar]
- Sap J., Muñoz A., Damm K., Goldberg Y., Ghysdael J., Leutz A., Beug H., Vennström B. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature. 1986 Dec 18;324(6098):635–640. doi: 10.1038/324635a0. [DOI] [PubMed] [Google Scholar]
- Sasaki S., Lesoon-Wood L. A., Dey A., Kuwata T., Weintraub B. D., Humphrey G., Yang W. M., Seto E., Yen P. M., Howard B. H. Ligand-induced recruitment of a histone deacetylase in the negative-feedback regulation of the thyrotropin beta gene. EMBO J. 1999 Oct 1;18(19):5389–5398. doi: 10.1093/emboj/18.19.5389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki S., Nakamura H., Tagami T., Miyoshi Y., Tanaka K., Imura H. A point mutation of the T3 receptor beta 1 gene in a kindred of generalized resistance to thyroid hormone. Mol Cell Endocrinol. 1992 Apr;84(3):159–166. doi: 10.1016/0303-7207(92)90026-3. [DOI] [PubMed] [Google Scholar]
- Tagami T., Gu W. X., Peairs P. T., West B. L., Jameson J. L. A novel natural mutation in the thyroid hormone receptor defines a dual functional domain that exchanges nuclear receptor corepressors and coactivators. Mol Endocrinol. 1998 Dec;12(12):1888–1902. doi: 10.1210/mend.12.12.0201. [DOI] [PubMed] [Google Scholar]
- Tagami T., Jameson J. L. Nuclear corepressors enhance the dominant negative activity of mutant receptors that cause resistance to thyroid hormone. Endocrinology. 1998 Feb;139(2):640–650. doi: 10.1210/endo.139.2.5742. [DOI] [PubMed] [Google Scholar]
- Tagami T., Madison L. D., Nagaya T., Jameson J. L. Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone. Mol Cell Biol. 1997 May;17(5):2642–2648. doi: 10.1128/mcb.17.5.2642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tagami T., Nakamura H., Sasaki S., Miyoshi Y., Imura H. Estimation of the protein content of thyroid hormone receptor alpha 1 and beta 1 in rat tissues by western blotting. Endocrinology. 1993 Jan;132(1):275–279. doi: 10.1210/endo.132.1.8419128. [DOI] [PubMed] [Google Scholar]
- Tagami T., Park Y., Jameson J. L. Mechanisms that mediate negative regulation of the thyroid-stimulating hormone alpha gene by the thyroid hormone receptor. J Biol Chem. 1999 Aug 6;274(32):22345–22353. doi: 10.1074/jbc.274.32.22345. [DOI] [PubMed] [Google Scholar]
- Takeuchi Yoko, Murata Yoshiharu, Sadow Peter, Hayashi Yoshitaka, Seo Hisao, Xu Jianming, O'Malley Bert W., Weiss Roy E., Refetoff Samuel. Steroid receptor coactivator-1 deficiency causes variable alterations in the modulation of T(3)-regulated transcription of genes in vivo. Endocrinology. 2002 Apr;143(4):1346–1352. doi: 10.1210/endo.143.4.8730. [DOI] [PubMed] [Google Scholar]
- Tillman J. B., Crone D. E., Kim H. S., Sprung C. N., Spindler S. R. Promoter independent down-regulation of the firefly luciferase gene by T3 and T3 receptor in CV1 cells. Mol Cell Endocrinol. 1993 Sep;95(1-2):101–109. doi: 10.1016/0303-7207(93)90034-h. [DOI] [PubMed] [Google Scholar]
- Tremblay J. J., Viger R. S. Transcription factor GATA-4 enhances Müllerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Mol Endocrinol. 1999 Aug;13(8):1388–1401. doi: 10.1210/mend.13.8.0330. [DOI] [PubMed] [Google Scholar]
- Tsukaguchi H., Yoshimasa Y., Fujimoto K., Ishii H., Yamamoto T., Yoshimasa T., Yagura T., Takamatsu J. Three novel mutations of thyroid hormone receptor beta gene in unrelated patients with resistance to thyroid hormone: two mutations of the same codon (H435L and H435Q) produce separate subtypes of resistance. J Clin Endocrinol Metab. 1995 Dec;80(12):3613–3616. doi: 10.1210/jcem.80.12.8530608. [DOI] [PubMed] [Google Scholar]
- Weinberger C., Thompson C. C., Ong E. S., Lebo R., Gruol D. J., Evans R. M. The c-erb-A gene encodes a thyroid hormone receptor. Nature. 1986 Dec 18;324(6098):641–646. doi: 10.1038/324641a0. [DOI] [PubMed] [Google Scholar]
- Weiss R. E., Forrest D., Pohlenz J., Cua K., Curran T., Refetoff S. Thyrotropin regulation by thyroid hormone in thyroid hormone receptor beta-deficient mice. Endocrinology. 1997 Sep;138(9):3624–3629. doi: 10.1210/endo.138.9.5412. [DOI] [PubMed] [Google Scholar]
- Wondisford F. E., Farr E. A., Radovick S., Steinfelder H. J., Moates J. M., McClaskey J. H., Weintraub B. D. Thyroid hormone inhibition of human thyrotropin beta-subunit gene expression is mediated by a cis-acting element located in the first exon. J Biol Chem. 1989 Sep 5;264(25):14601–14604. [PubMed] [Google Scholar]
- Wood W. M., Kao M. Y., Gordon D. F., Ridgway E. C. Thyroid hormone regulates the mouse thyrotropin beta-subunit gene promoter in transfected primary thyrotropes. J Biol Chem. 1989 Sep 5;264(25):14840–14847. [PubMed] [Google Scholar]
