Abstract
The HePTP (haematopoietic protein tyrosine phosphatase) is a negative regulator of the ERK2 (extracellular signal-regulated protein kinase 2) and p38 MAP kinases (mitogen-activated protein kinases) in T-cells. This inhibitory function requires a physical association of HePTP through an N-terminal KIM (kinase-interaction motif) with ERK and p38. We previously reported that PKA (cAMP-dependent protein kinase) phosphorylates Ser-23 within the KIM of HePTP, resulting in dissociation of HePTP from ERK2. Here we follow the phosphorylation of this site in intact T-cells. We find that HePTP is phosphorylated at Ser-23 in resting T-cells and that this phosphorylation increases upon treatment of the cells with agents that elevate intracellular cAMP, such as prostaglandin E2. HePTP phosphorylation occurred at discrete regions at the cell surface. Phosphorylation was reduced by inhibitors of PKA and increased by inhibitors of protein phosphatases PP1 and PP2A, but not by inhibitors of calcineurin. In vitro, PP1 efficiently dephosphorylated HePTP at Ser-23, while PP2A was much less efficient. Activation of PP1 by treatment of the cells with ceramide suppressed Ser-23 phosphorylation, as did transfection of the catalytic subunit of PP1. Phosphorylation at Ser-23 is also increased in a transient manner upon T-cell antigen receptor ligation. In contrast, treatment of cells with phorbol ester had no effect on HePTP phosphorylation at Ser-23. We conclude from these results that HePTP is under continuous control by PKA and a serine-specific phosphatase, probably PP1, in T-cells and that this basal phosphorylation at Ser-23 can rapidly change in response to external stimuli. This, in turn, will affect the ability of HePTP to inhibit the ERK and p38 MAP kinases.
Full Text
The Full Text of this article is available as a PDF (297.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi M., Sekiya M., Ishino M., Sasaki H., Hinoda Y., Imai K., Yachi A. Induction of protein-tyrosine phosphatase LC-PTP by IL-2 in human T cells. LC-PTP is an early response gene. FEBS Lett. 1994 Jan 24;338(1):47–52. doi: 10.1016/0014-5793(94)80114-2. [DOI] [PubMed] [Google Scholar]
- Adachi M., Sekiya M., Isobe M., Kumura Y., Ogita Z., Hinoda Y., Imai K., Yachi A. Molecular cloning and chromosomal mapping of a human protein-tyrosine phosphatase LC-PTP. Biochem Biophys Res Commun. 1992 Aug 14;186(3):1607–1615. doi: 10.1016/s0006-291x(05)81592-x. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., Gomez N., Moorhead G., Lewis T., Keyse S. M., Cohen P. Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr Biol. 1995 Mar 1;5(3):283–295. doi: 10.1016/s0960-9822(95)00059-5. [DOI] [PubMed] [Google Scholar]
- Alonso A., Saxena M., Williams S., Mustelin T. Inhibitory role for dual specificity phosphatase VHR in T cell antigen receptor and CD28-induced Erk and Jnk activation. J Biol Chem. 2000 Nov 20;276(7):4766–4771. doi: 10.1074/jbc.M006497200. [DOI] [PubMed] [Google Scholar]
- Alonso Andres, Rahmouni Souad, Williams Scott, van Stipdonk Marianne, Jaroszewski Lukasz, Godzik Adam, Abraham Robert T., Schoenberger Stephen P., Mustelin Tomas. Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nat Immunol. 2002 Nov 25;4(1):44–48. doi: 10.1038/ni856. [DOI] [PubMed] [Google Scholar]
- Boulanger L. M., Lombroso P. J., Raghunathan A., During M. J., Wahle P., Naegele J. R. Cellular and molecular characterization of a brain-enriched protein tyrosine phosphatase. J Neurosci. 1995 Feb;15(2):1532–1544. doi: 10.1523/JNEUROSCI.15-02-01532.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bult A., Zhao F., Dirkx R., Jr, Raghunathan A., Solimena M., Lombroso P. J. STEP: a family of brain-enriched PTPs. Alternative splicing produces transmembrane, cytosolic and truncated isoforms. Eur J Cell Biol. 1997 Apr;72(4):337–344. [PubMed] [Google Scholar]
- Canagarajah B. J., Khokhlatchev A., Cobb M. H., Goldsmith E. J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell. 1997 Sep 5;90(5):859–869. doi: 10.1016/s0092-8674(00)80351-7. [DOI] [PubMed] [Google Scholar]
- Chalfant C. E., Ogretmen B., Galadari S., Kroesen B. J., Pettus B. J., Hannun Y. A. FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J Biol Chem. 2001 Aug 13;276(48):44848–44855. doi: 10.1074/jbc.M106291200. [DOI] [PubMed] [Google Scholar]
- Chiang C. W., Harris G., Ellig C., Masters S. C., Subramanian R., Shenolikar S., Wadzinski B. E., Yang E. Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin- 3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood. 2001 Mar 1;97(5):1289–1297. doi: 10.1182/blood.v97.5.1289. [DOI] [PubMed] [Google Scholar]
- Cobb M. H., Xu S., Hepler J. E., Hutchison M., Frost J., Robbins D. J. Regulation of the MAP kinase cascade. Cell Mol Biol Res. 1994;40(3):253–256. [PubMed] [Google Scholar]
- Gjörloff-Wingren A., Saxena M., Han S., Wang X., Alonso A., Renedo M., Oh P., Williams S., Schnitzer J., Mustelin T. Subcellular localization of intracellular protein tyrosine phosphatases in T cells. Eur J Immunol. 2000 Aug;30(8):2412–2421. doi: 10.1002/1521-4141(2000)30:8<2412::AID-IMMU2412>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Goldsmith E. J., Cobb M. H. Protein kinases. Curr Opin Struct Biol. 1994 Dec;4(6):833–840. doi: 10.1016/0959-440x(94)90264-x. [DOI] [PubMed] [Google Scholar]
- Gronda M., Arab S., Iafrate B., Suzuki H., Zanke B. W. Hematopoietic protein tyrosine phosphatase suppresses extracellular stimulus-regulated kinase activation. Mol Cell Biol. 2001 Oct;21(20):6851–6858. doi: 10.1128/MCB.21.20.6851-6858.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem. 1995 Jul 14;270(28):16483–16486. doi: 10.1074/jbc.270.28.16483. [DOI] [PubMed] [Google Scholar]
- Keyse S. M. Protein phosphatases and the regulation of MAP kinase activity. Semin Cell Dev Biol. 1998 Apr;9(2):143–152. doi: 10.1006/scdb.1997.0219. [DOI] [PubMed] [Google Scholar]
- Khokhlatchev A. V., Canagarajah B., Wilsbacher J., Robinson M., Atkinson M., Goldsmith E., Cobb M. H. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell. 1998 May 15;93(4):605–615. doi: 10.1016/s0092-8674(00)81189-7. [DOI] [PubMed] [Google Scholar]
- Kholod N., Mustelin T. Novel vectors for co-expression of two proteins in E. coli. Biotechniques. 2001 Aug;31(2):322-3, 326-8. doi: 10.2144/01312st03. [DOI] [PubMed] [Google Scholar]
- Lombroso P. J., Murdoch G., Lerner M. Molecular characterization of a protein-tyrosine-phosphatase enriched in striatum. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7242–7246. doi: 10.1073/pnas.88.16.7242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogata M., Sawada M., Fujino Y., Hamaoka T. cDNA cloning and characterization of a novel receptor-type protein tyrosine phosphatase expressed predominantly in the brain. J Biol Chem. 1995 Feb 3;270(5):2337–2343. doi: 10.1074/jbc.270.5.2337. [DOI] [PubMed] [Google Scholar]
- Oh-hora M., Ogata M., Mori Y., Adachi M., Imai K., Kosugi A., Hamaoka T. Direct suppression of TCR-mediated activation of extracellular signal-regulated kinase by leukocyte protein tyrosine phosphatase, a tyrosine-specific phosphatase. J Immunol. 1999 Aug 1;163(3):1282–1288. [PubMed] [Google Scholar]
- Paul Surojit, Nairn Angus C., Wang Ping, Lombroso Paul J. NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat Neurosci. 2003 Jan;6(1):34–42. doi: 10.1038/nn989. [DOI] [PubMed] [Google Scholar]
- Pulido R., Zúiga A., Ullrich A. PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J. 1998 Dec 15;17(24):7337–7350. doi: 10.1093/emboj/17.24.7337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxena M., Mustelin T. Extracellular signals and scores of phosphatases: all roads lead to MAP kinase. Semin Immunol. 2000 Aug;12(4):387–396. doi: 10.1006/smim.2000.0219. [DOI] [PubMed] [Google Scholar]
- Saxena M., Williams S., Brockdorff J., Gilman J., Mustelin T. Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP). J Biol Chem. 1999 Apr 23;274(17):11693–11700. doi: 10.1074/jbc.274.17.11693. [DOI] [PubMed] [Google Scholar]
- Saxena M., Williams S., Gilman J., Mustelin T. Negative regulation of T cell antigen receptor signal transduction by hematopoietic tyrosine phosphatase (HePTP). J Biol Chem. 1998 Jun 19;273(25):15340–15344. doi: 10.1074/jbc.273.25.15340. [DOI] [PubMed] [Google Scholar]
- Saxena M., Williams S., Taskén K., Mustelin T. Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase. Nat Cell Biol. 1999 Sep;1(5):305–311. doi: 10.1038/13024. [DOI] [PubMed] [Google Scholar]
- Sharma E., Lombroso P. J. A neuronal protein tyrosine phosphatase induced by nerve growth factor. J Biol Chem. 1995 Jan 6;270(1):49–53. doi: 10.1074/jbc.270.1.49. [DOI] [PubMed] [Google Scholar]
- Sharma E., Zhao F., Bult A., Lombroso P. J. Identification of two alternatively spliced transcripts of STEP: a subfamily of brain-enriched protein tyrosine phosphatases. Brain Res Mol Brain Res. 1995 Aug;32(1):87–93. doi: 10.1016/0169-328x(95)00066-2. [DOI] [PubMed] [Google Scholar]
- Shiozuka K., Watanabe Y., Ikeda T., Hashimoto S., Kawashima H. Cloning and expression of PCPTP1 encoding protein tyrosine phosphatase. Gene. 1995 Sep 11;162(2):279–284. doi: 10.1016/0378-1119(95)00306-q. [DOI] [PubMed] [Google Scholar]
- Sundaresan Pavithra, Farndale Richard W. P38 mitogen-activated protein kinase dephosphorylation is regulated by protein phosphatase 2A in human platelets activated by collagen. FEBS Lett. 2002 Sep 25;528(1-3):139–144. doi: 10.1016/s0014-5793(02)03277-5. [DOI] [PubMed] [Google Scholar]
- Swieter M., Berenstein E. H., Swaim W. D., Siraganian R. P. Aggregation of IgE receptors in rat basophilic leukemia 2H3 cells induces tyrosine phosphorylation of the cytosolic protein-tyrosine phosphatase HePTP. J Biol Chem. 1995 Sep 15;270(37):21902–21906. doi: 10.1074/jbc.270.37.21902. [DOI] [PubMed] [Google Scholar]
- Wang Ping-Yuan, Liu Pingsheng, Weng Jian, Sontag Estelle, Anderson Richard G. W. A cholesterol-regulated PP2A/HePTP complex with dual specificity ERK1/2 phosphatase activity. EMBO J. 2003 Jun 2;22(11):2658–2667. doi: 10.1093/emboj/cdg255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitehurst C. E., Geppert T. D. MEK1 and the extracellular signal-regulated kinases are required for the stimulation of IL-2 gene transcription in T cells. J Immunol. 1996 Feb 1;156(3):1020–1029. [PubMed] [Google Scholar]
- Zanke B., Suzuki H., Kishihara K., Mizzen L., Minden M., Pawson A., Mak T. W. Cloning and expression of an inducible lymphoid-specific, protein tyrosine phosphatase (HePTPase). Eur J Immunol. 1992 Jan;22(1):235–239. doi: 10.1002/eji.1830220134. [DOI] [PubMed] [Google Scholar]
- Zhang F., Strand A., Robbins D., Cobb M. H., Goldsmith E. J. Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature. 1994 Feb 24;367(6465):704–711. doi: 10.1038/367704a0. [DOI] [PubMed] [Google Scholar]
- Zhang J., Zhang F., Ebert D., Cobb M. H., Goldsmith E. J. Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure. 1995 Mar 15;3(3):299–307. doi: 10.1016/s0969-2126(01)00160-5. [DOI] [PubMed] [Google Scholar]
- Zúiga A., Torres J., Ubeda J., Pulido R. Interaction of mitogen-activated protein kinases with the kinase interaction motif of the tyrosine phosphatase PTP-SL provides substrate specificity and retains ERK2 in the cytoplasm. J Biol Chem. 1999 Jul 30;274(31):21900–21907. doi: 10.1074/jbc.274.31.21900. [DOI] [PubMed] [Google Scholar]
