Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 1;378(Pt 2):687–692. doi: 10.1042/BJ20031470

Amino acid residue 247 in canine sulphotransferase SULT1D1: a new determinant of substrate selectivity.

Carrie Tsoi 1, Mikael Widersten 1, Ralf Morgenstern 1, Stellan Swedmark 1
PMCID: PMC1223967  PMID: 14614767

Abstract

The SULT (sulphotransferase) family plays a critical role in the detoxification and activation of endogenous and exogenous compounds as well as in the regulation of steroid hormone actions and neurotransmitter functions. The structure-activity relationships of the human SULTs have been investigated with focus on the amino acid 146 in hSULT1A3 and its impact on dopamine/PNP (p-nitrophenol) specificity. In the present study, we have generated canine SULT1D1 (cSULT1D1) variants with mutations at amino acid residues in the substrate-binding pocket [A146E (Ala-146-->Glu), A146D, A146Q, I86D or D247L]. These mutation sites were chosen with regard to their possible contribution to the marked dopamine/PNP preference of cSULT1D1. After characterization, we found that the overall sulphation efficiencies for the cSULT1D1 A146 and the I86 mutants were strongly decreased for both substrates compared with wild-type cSULT1D1 but the substrate preference was unchanged. In contrast, the D247L mutant was found to be more than 21-fold better at sulphating PNP (120-fold decrease in K(m) value) but 54-fold less efficient in sulphating dopamine (8-fold increase in K(m) value) and the preference was switched from dopamine to PNP, indicating the importance of this amino acid in the dopamine/PNP preference in cSULT1D1. Our results show that Asp-247 has a pronounced effect on the substrate specificity of cSULT1D1 and thus we have identified a previously unrecognized contributor to active-site selectivity.

Full Text

The Full Text of this article is available as a PDF (107.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bidwell L. M., McManus M. E., Gaedigk A., Kakuta Y., Negishi M., Pedersen L., Martin J. L. Crystal structure of human catecholamine sulfotransferase. J Mol Biol. 1999 Oct 29;293(3):521–530. doi: 10.1006/jmbi.1999.3153. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Brix L. A., Barnett A. C., Duggleby R. G., Leggett B., McManus M. E. Analysis of the substrate specificity of human sulfotransferases SULT1A1 and SULT1A3: site-directed mutagenesis and kinetic studies. Biochemistry. 1999 Aug 10;38(32):10474–10479. doi: 10.1021/bi990795q. [DOI] [PubMed] [Google Scholar]
  4. Brix L. A., Duggleby R. G., Gaedigk A., McManus M. E. Structural characterization of human aryl sulphotransferases. Biochem J. 1999 Jan 15;337(Pt 2):337–343. [PMC free article] [PubMed] [Google Scholar]
  5. Chen G., Rabjohn P. A., York J. L., Wooldridge C., Zhang D., Falany C. N., Radominska-Pandya A. Carboxyl residues in the active site of human phenol sulfotransferase (SULT1A1). Biochemistry. 2000 Dec 26;39(51):16000–16007. doi: 10.1021/bi0021479. [DOI] [PubMed] [Google Scholar]
  6. Dajani R., Cleasby A., Neu M., Wonacott A. J., Jhoti H., Hood A. M., Modi S., Hersey A., Taskinen J., Cooke R. M. X-ray crystal structure of human dopamine sulfotransferase, SULT1A3. Molecular modeling and quantitative structure-activity relationship analysis demonstrate a molecular basis for sulfotransferase substrate specificity. J Biol Chem. 1999 Dec 31;274(53):37862–37868. doi: 10.1074/jbc.274.53.37862. [DOI] [PubMed] [Google Scholar]
  7. Dajani R., Hood A. M., Coughtrie M. W. A single amino acid, glu146, governs the substrate specificity of a human dopamine sulfotransferase, SULT1A3. Mol Pharmacol. 1998 Dec;54(6):942–948. doi: 10.1124/mol.54.6.942. [DOI] [PubMed] [Google Scholar]
  8. Dousa M. K., Tyce G. M. Free and conjugated plasma catecholamines, DOPA and 3-O-methyldopa in humans and in various animal species. Proc Soc Exp Biol Med. 1988 Sep;188(4):427–434. doi: 10.3181/00379727-188-42755. [DOI] [PubMed] [Google Scholar]
  9. Foldes A., Meek J. L. Rat brain phenolsulfotransferase: partial purification and some properties. Biochim Biophys Acta. 1973 Dec 19;327(2):365–374. doi: 10.1016/0005-2744(73)90419-1. [DOI] [PubMed] [Google Scholar]
  10. Gamage Niranjali U., Duggleby Ronald G., Barnett Amanda C., Tresillian Michael, Latham Catherine F., Liyou Nancy E., McManus Michael E., Martin Jennifer L. Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition. J Biol Chem. 2002 Dec 5;278(9):7655–7662. doi: 10.1074/jbc.M207246200. [DOI] [PubMed] [Google Scholar]
  11. Hashizume K., Yamatodani A., Yamamoto T., Wada H., Ogihara T. Contents of dopamine sulfoconjugate isomers and their desulfation in dog arteries. Biochem Pharmacol. 1989 Jun 15;38(12):1891–1895. doi: 10.1016/0006-2952(89)90486-3. [DOI] [PubMed] [Google Scholar]
  12. Johnson G. A., Baker C. A. Sulfation of minoxidil by human platelet sulfotransferase. Clin Chim Acta. 1987 Nov 16;169(2-3):217–227. doi: 10.1016/0009-8981(87)90322-6. [DOI] [PubMed] [Google Scholar]
  13. Kakuta Y., Pedersen L. G., Carter C. W., Negishi M., Pedersen L. C. Crystal structure of estrogen sulphotransferase. Nat Struct Biol. 1997 Nov;4(11):904–908. doi: 10.1038/nsb1197-904. [DOI] [PubMed] [Google Scholar]
  14. Liu M. C., Suiko M., Sakakibara Y. Mutational analysis of the substrate binding/catalytic domains of human M form and P form phenol sulfotransferases. J Biol Chem. 2000 May 5;275(18):13460–13464. doi: 10.1074/jbc.275.18.13460. [DOI] [PubMed] [Google Scholar]
  15. Meinl W., Glatt H. Structure and localization of the human SULT1B1 gene: neighborhood to SULT1E1 and a SULT1D pseudogene. Biochem Biophys Res Commun. 2001 Nov 9;288(4):855–862. doi: 10.1006/bbrc.2001.5829. [DOI] [PubMed] [Google Scholar]
  16. Negishi M., Pedersen L. G., Petrotchenko E., Shevtsov S., Gorokhov A., Kakuta Y., Pedersen L. C. Structure and function of sulfotransferases. Arch Biochem Biophys. 2001 Jun 15;390(2):149–157. doi: 10.1006/abbi.2001.2368. [DOI] [PubMed] [Google Scholar]
  17. Pai T. Govind, Oxendine Ila, Sugahara Takuya, Suiko Masahito, Sakakibara Yoichi, Liu Ming-Cheh. Structure-function relationships in the stereospecific and manganese-dependent 3,4-dihydroxyphenylalanine/tyrosine-sulfating activity of human monoamine-form phenol sulfotransferase, SULT1A3. J Biol Chem. 2002 Nov 6;278(3):1525–1532. doi: 10.1074/jbc.M203108200. [DOI] [PubMed] [Google Scholar]
  18. Pedersen L. C., Petrotchenko E. V., Negishi M. Crystal structure of SULT2A3, human hydroxysteroid sulfotransferase. FEBS Lett. 2000 Jun 9;475(1):61–64. doi: 10.1016/s0014-5793(00)01479-4. [DOI] [PubMed] [Google Scholar]
  19. Pedersen Lars C., Petrotchenko Evgeniy, Shevtsov Sergei, Negishi Masahiko. Crystal structure of the human estrogen sulfotransferase-PAPS complex: evidence for catalytic role of Ser137 in the sulfuryl transfer reaction. J Biol Chem. 2002 Mar 7;277(20):17928–17932. doi: 10.1074/jbc.M111651200. [DOI] [PubMed] [Google Scholar]
  20. Rehse Peter H., Zhou Ming, Lin Sheng-Xiang. Crystal structure of human dehydroepiandrosterone sulphotransferase in complex with substrate. Biochem J. 2002 May 15;364(Pt 1):165–171. doi: 10.1042/bj3640165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sakakibara Y., Takami Y., Nakayama T., Suiko M., Liu M. C. Localization and functional analysis of the substrate specificity/catalytic domains of human M-form and P-form phenol sulfotransferases. J Biol Chem. 1998 Mar 13;273(11):6242–6247. doi: 10.1074/jbc.273.11.6242. [DOI] [PubMed] [Google Scholar]
  22. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  23. Tsoi C., Falany C. N., Morgenstern R., Swedmark S. Identification of a new subfamily of sulphotransferases: cloning and characterization of canine SULT1D1. Biochem J. 2001 Jun 15;356(Pt 3):891–897. doi: 10.1042/0264-6021:3560891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tsoi C., Falany C. N., Morgenstern R., Swedmark S. Molecular cloning, expression, and characterization of a canine sulfotransferase that is a human ST1B2 ortholog. Arch Biochem Biophys. 2001 Jun 1;390(1):87–92. doi: 10.1006/abbi.2001.2373. [DOI] [PubMed] [Google Scholar]
  25. Tsoi Carrie, Morgenstern Ralf, Swedmark Stellan. Canine sulfotransferase SULT1A1: molecular cloning, expression, and characterization. Arch Biochem Biophys. 2002 May 15;401(2):125–133. doi: 10.1016/S0003-9861(02)00021-8. [DOI] [PubMed] [Google Scholar]
  26. Weinshilboum R. M., Otterness D. M., Aksoy I. A., Wood T. C., Her C., Raftogianis R. B. Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes. FASEB J. 1997 Jan;11(1):3–14. [PubMed] [Google Scholar]
  27. Yoshinari K., Petrotchenko E. V., Pedersen L. C., Negishi M. Crystal structure-based studies of cytosolic sulfotransferase. J Biochem Mol Toxicol. 2001;15(2):67–75. doi: 10.1002/jbt.1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES