Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 1;378(Pt 2):363–371. doi: 10.1042/BJ20031496

Autoproteolytic activation of human aspartylglucosaminidase.

Jani Saarela 1, Carita Oinonen 1, Anu Jalanko 1, Juha Rouvinen 1, Leena Peltonen 1
PMCID: PMC1223969  PMID: 14616088

Abstract

Aspartylglucosaminidase (AGA) belongs to the N-terminal nucleophile (Ntn) hydrolase superfamily characterized by an N-terminal nucleophile as the catalytic residue. Three-dimensional structures of the Ntn hydrolases reveal a common folding pattern and equivalent stereochemistry at the active site. The activation of the precursor polypeptide occurs autocatalytically, and for some amidohydrolases of prokaryotes, the precursor structure is known and activation mechanisms are suggested. In humans, the deficient AGA activity results in a lysosomal storage disease, aspartylglucosaminuria (AGU) resulting in progressive neurodegeneration. Most of the disease-causing mutations lead to defective molecular maturation of AGA, and, to understand the structure-function relationship better, in the present study, we have analysed the effects of targeted amino acid substitutions on the activation process of human AGA. We have evaluated the effect of the previously published mutations and, in addition, nine novel mutations were generated. We could identify one novel amino acid, Gly258, with an important structural role on the autocatalytic activation of human AGA, and present the molecular mechanism for the autoproteolytic activation of the eukaryotic enzyme. Based on the results of the present study, and by comparing the available information on the activation of the Ntn-hydrolases, the autocatalytic processes of the prokaryotic and eukaryotic enzymes share common features. First, the critical nucleophile functions both as the catalytic and autocatalytic residue; secondly, the side chain of this nucleophile is oriented towards the scissile peptide bond; thirdly, conformational strain exists in the precursor at the cleavage site; finally, water molecules are utilized in the activation process.

Full Text

The Full Text of this article is available as a PDF (315.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brannigan J. A., Dodson G., Duggleby H. J., Moody P. C., Smith J. L., Tomchick D. R., Murzin A. G. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature. 1995 Nov 23;378(6555):416–419. doi: 10.1038/378416a0. [DOI] [PubMed] [Google Scholar]
  2. Brogdon W. G., Dickinson C. M. A microassay system for measuring esterase activity and protein concentration in small samples and in high-pressure liquid chromatography eluate fractions. Anal Biochem. 1983 Jun;131(2):499–503. doi: 10.1016/0003-2697(83)90204-x. [DOI] [PubMed] [Google Scholar]
  3. Choi K. S., Kim J. A., Kang H. S. Effects of site-directed mutations on processing and activities of penicillin G acylase from Escherichia coli ATCC 11105. J Bacteriol. 1992 Oct;174(19):6270–6276. doi: 10.1128/jb.174.19.6270-6276.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ditzel L., Huber R., Mann K., Heinemeyer W., Wolf D. H., Groll M. Conformational constraints for protein self-cleavage in the proteasome. J Mol Biol. 1998 Jun 26;279(5):1187–1191. doi: 10.1006/jmbi.1998.1818. [DOI] [PubMed] [Google Scholar]
  5. Duggleby H. J., Tolley S. P., Hill C. P., Dodson E. J., Dodson G., Moody P. C. Penicillin acylase has a single-amino-acid catalytic centre. Nature. 1995 Jan 19;373(6511):264–268. doi: 10.1038/373264a0. [DOI] [PubMed] [Google Scholar]
  6. Groll M., Ditzel L., Löwe J., Stock D., Bochtler M., Bartunik H. D., Huber R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature. 1997 Apr 3;386(6624):463–471. doi: 10.1038/386463a0. [DOI] [PubMed] [Google Scholar]
  7. Guan C., Liu Y., Shao Y., Cui T., Liao W., Ewel A., Whitaker R., Paulus H. Characterization and functional analysis of the cis-autoproteolysis active center of glycosylasparaginase. J Biol Chem. 1998 Apr 17;273(16):9695–9702. doi: 10.1074/jbc.273.16.9695. [DOI] [PubMed] [Google Scholar]
  8. Guo H. C., Xu Q., Buckley D., Guan C. Crystal structures of Flavobacterium glycosylasparaginase. An N-terminal nucleophile hydrolase activated by intramolecular proteolysis. J Biol Chem. 1998 Aug 7;273(32):20205–20212. doi: 10.1074/jbc.273.32.20205. [DOI] [PubMed] [Google Scholar]
  9. Halila R., Baumann M., Ikonen E., Enomaa N., Peltonen L. Human leucocyte aspartylglucosaminidase. Evidence for two different subunits in a more complex native structure. Biochem J. 1991 May 15;276(Pt 1):251–256. doi: 10.1042/bj2760251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hewitt L., Kasche V., Lummer K., Lewis R. J., Murshudov G. N., Verma C. S., Dodson G. G., Wilson K. S. Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active-site cleft. J Mol Biol. 2000 Sep 29;302(4):887–898. doi: 10.1006/jmbi.2000.4105. [DOI] [PubMed] [Google Scholar]
  11. Ikonen E., Julkunen I., Tollersrud O. K., Kalkkinen N., Peltonen L. Lysosomal aspartylglucosaminidase is processed to the active subunit complex in the endoplasmic reticulum. EMBO J. 1993 Jan;12(1):295–302. doi: 10.1002/j.1460-2075.1993.tb05656.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kasche V., Lummer K., Nurk A., Piotraschke E., Rieks A., Stoeva S., Voelter W. Intramolecular autoproteolysis initiates the maturation of penicillin amidase from Escherichia coli. Biochim Biophys Acta. 1999 Aug 17;1433(1-2):76–86. doi: 10.1016/s0167-4838(99)00155-7. [DOI] [PubMed] [Google Scholar]
  13. Kim Jin Kwang, Yang In Seok, Rhee Sangkee, Dauter Zbigniew, Lee Young Sik, Park Sung Soo, Kim Kyung Hyun. Crystal structures of glutaryl 7-aminocephalosporanic acid acylase: insight into autoproteolytic activation. Biochemistry. 2003 Apr 15;42(14):4084–4093. doi: 10.1021/bi027181x. [DOI] [PubMed] [Google Scholar]
  14. Kim Y., Yoon K., Khang Y., Turley S., Hol W. G. The 2.0 A crystal structure of cephalosporin acylase. Structure. 2000 Oct 15;8(10):1059–1068. doi: 10.1016/s0969-2126(00)00505-0. [DOI] [PubMed] [Google Scholar]
  15. Kim Youngsoo, Kim Sanggu, Earnest Thomas N., Hol Wim G. J. Precursor structure of cephalosporin acylase. Insights into autoproteolytic activation in a new N-terminal hydrolase family. J Biol Chem. 2001 Nov 8;277(4):2823–2829. doi: 10.1074/jbc.M108888200. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lee Y. S., Kim H. W., Park S. S. The role of alpha-amino group of the N-terminal serine of beta subunit for enzyme catalysis and autoproteolytic activation of glutaryl 7-aminocephalosporanic acid acylase. J Biol Chem. 2000 Dec 15;275(50):39200–39206. doi: 10.1074/jbc.M002504200. [DOI] [PubMed] [Google Scholar]
  18. Lee Y. S., Park S. S. Two-step autocatalytic processing of the glutaryl 7-aminocephalosporanic acid acylase from Pseudomonas sp. strain GK16. J Bacteriol. 1998 Sep;180(17):4576–4582. doi: 10.1128/jb.180.17.4576-4582.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li S., Smith J. L., Zalkin H. Mutational analysis of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing. J Bacteriol. 1999 Mar;181(5):1403–1408. doi: 10.1128/jb.181.5.1403-1408.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liu Y., Guan C., Aronson N. N., Jr Site-directed mutagenesis of essential residues involved in the mechanism of bacterial glycosylasparaginase. J Biol Chem. 1998 Apr 17;273(16):9688–9694. doi: 10.1074/jbc.273.16.9688. [DOI] [PubMed] [Google Scholar]
  21. Löwe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science. 1995 Apr 28;268(5210):533–539. doi: 10.1126/science.7725097. [DOI] [PubMed] [Google Scholar]
  22. Oinonen C., Rouvinen J. Structural comparison of Ntn-hydrolases. Protein Sci. 2000 Dec;9(12):2329–2337. doi: 10.1110/ps.9.12.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oinonen C., Tikkanen R., Rouvinen J., Peltonen L. Three-dimensional structure of human lysosomal aspartylglucosaminidase. Nat Struct Biol. 1995 Dec;2(12):1102–1108. doi: 10.1038/nsb1295-1102. [DOI] [PubMed] [Google Scholar]
  24. Peltola M., Tikkanen R., Peltonen L., Jalanko A. Ser72Pro active-site disease mutation in human lysosomal aspartylglucosaminidase: abnormal intracellular processing and evidence for extracellular activation. Hum Mol Genet. 1996 Jun;5(6):737–743. doi: 10.1093/hmg/5.6.737. [DOI] [PubMed] [Google Scholar]
  25. Perler F. B., Davis E. O., Dean G. E., Gimble F. S., Jack W. E., Neff N., Noren C. J., Thorner J., Belfort M. Protein splicing elements: inteins and exteins--a definition of terms and recommended nomenclature. Nucleic Acids Res. 1994 Apr 11;22(7):1125–1127. doi: 10.1093/nar/22.7.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Qian Xiaofeng, Guan Chudi, Guo Hwai-Chen. A dual role for an aspartic acid in glycosylasparaginase autoproteolysis. Structure. 2003 Aug;11(8):997–1003. doi: 10.1016/s0969-2126(03)00150-3. [DOI] [PubMed] [Google Scholar]
  27. REISSIG J. L., STORMINGER J. L., LELOIR L. F. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955 Dec;217(2):959–966. [PubMed] [Google Scholar]
  28. Riikonen A., Rouvinen J., Tikkanen R., Julkunen I., Peltonen L., Jalanko A. Primary folding of aspartylglucosaminidase. Significance of disulfide bridges and evidence of early multimerization. J Biol Chem. 1996 Aug 30;271(35):21340–21344. doi: 10.1074/jbc.271.35.21340. [DOI] [PubMed] [Google Scholar]
  29. Riikonen A., Tikkanen R., Jalanko A., Peltonen L. Immediate interaction between the nascent subunits and two conserved amino acids Trp34 and Thr206 are needed for the catalytic activity of aspartylglucosaminidase. J Biol Chem. 1995 Mar 3;270(9):4903–4907. doi: 10.1074/jbc.270.9.4903. [DOI] [PubMed] [Google Scholar]
  30. Saarela J., Laine M., Oinonen C., von Schantz C., Jalanko A., Rouvinen J., Peltonen L. Molecular pathogenesis of a disease: structural consequences of aspartylglucosaminuria mutations. Hum Mol Genet. 2001 Apr 15;10(9):983–995. doi: 10.1093/hmg/10.9.983. [DOI] [PubMed] [Google Scholar]
  31. Saarela J., Laine M., Tikkanen R., Oinonen C., Jalanko A., Rouvinen J., Peltonen L. Activation and oligomerization of aspartylglucosaminidase. J Biol Chem. 1998 Sep 25;273(39):25320–25328. doi: 10.1074/jbc.273.39.25320. [DOI] [PubMed] [Google Scholar]
  32. Schmidtke G., Kraft R., Kostka S., Henklein P., Frömmel C., Löwe J., Huber R., Kloetzel P. M., Schmidt M. Analysis of mammalian 20S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J. 1996 Dec 16;15(24):6887–6898. [PMC free article] [PubMed] [Google Scholar]
  33. Shao Y., Xu M. Q., Paulus H. Protein splicing: evidence for an N-O acyl rearrangement as the initial step in the splicing process. Biochemistry. 1996 Mar 26;35(12):3810–3815. doi: 10.1021/bi952592h. [DOI] [PubMed] [Google Scholar]
  34. Smith J. L., Zaluzec E. J., Wery J. P., Niu L., Switzer R. L., Zalkin H., Satow Y. Structure of the allosteric regulatory enzyme of purine biosynthesis. Science. 1994 Jun 3;264(5164):1427–1433. doi: 10.1126/science.8197456. [DOI] [PubMed] [Google Scholar]
  35. Spaete R. R., Mocarski E. S. Regulation of cytomegalovirus gene expression: alpha and beta promoters are trans activated by viral functions in permissive human fibroblasts. J Virol. 1985 Oct;56(1):135–143. doi: 10.1128/jvi.56.1.135-143.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stacey A., Schnieke A. SVpoly: a versatile mammalian expression vector. Nucleic Acids Res. 1990 May 11;18(9):2829–2829. doi: 10.1093/nar/18.9.2829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Suresh C. G., Pundle A. V., SivaRaman H., Rao K. N., Brannigan J. A., McVey C. E., Verma C. S., Dauter Z., Dodson E. J., Dodson G. G. Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members. Nat Struct Biol. 1999 May;6(5):414–416. doi: 10.1038/8213. [DOI] [PubMed] [Google Scholar]
  38. Tikkanen R., Riikonen A., Oinonen C., Rouvinen R., Peltonen L. Functional analyses of active site residues of human lysosomal aspartylglucosaminidase: implications for catalytic mechanism and autocatalytic activation. EMBO J. 1996 Jun 17;15(12):2954–2960. [PMC free article] [PubMed] [Google Scholar]
  39. Wang Yeming, Guo Hwai-Chen. Two-step dimerization for autoproteolysis to activate glycosylasparaginase. J Biol Chem. 2002 Nov 13;278(5):3210–3219. doi: 10.1074/jbc.M210431200. [DOI] [PubMed] [Google Scholar]
  40. Xu Q., Buckley D., Guan C., Guo H. C. Structural insights into the mechanism of intramolecular proteolysis. Cell. 1999 Sep 3;98(5):651–661. doi: 10.1016/s0092-8674(00)80052-5. [DOI] [PubMed] [Google Scholar]
  41. Yoon Jongchul, Oh Bora, Kim Kyunggon, Park Jungeun, Han Dohyun, Kim Kyeong Kyu, Cha Sun-Shin, Lee Dongsoon, Kim Youngsoo. A bound water molecule is crucial in initiating autocatalytic precursor activation in an N-terminal hydrolase. J Biol Chem. 2003 Oct 8;279(1):341–347. doi: 10.1074/jbc.M309281200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES