Abstract
An acute increase in the Vmax for glucose uptake occurs in many mammalian cell types after exposure to osmotic or metabolic stress. In the rat epithelial Clone 9 cell line, the glucose transporter isoform GLUT1 is responsible for this enhanced uptake. Although stimulation of transport in these cells is known to result from the unmasking of 'cryptic' exofacial permeant-binding sites in GLUT1 molecules resident in the plasma membrane, the mechanism of such unmasking remains unclear. One possibility involves changes in the lipid environment of the transporter: reconstitution experiments have shown that transport activity in vitro is acutely sensitive to the phospholipid and cholesterol composition of the membrane. In the current study we found that treatment of Clone 9 cells with methyl-beta-cyclodextrin, which removed >80% of the cell cholesterol, led to a 3.5-fold increase in the Vmax for 3-O-methyl-D-glucose transport while having little effect on the Km. In contrast to the metabolic stress induced by inhibition of oxidative phosphorylation, cholesterol depletion led neither to depletion of cellular ATP nor stimulation of AMP-activated protein kinase. Similarly, it did not result in stimulation of members of the stress- and mitogen-activated protein kinase families. In unstressed, cholesterol-replete cells, a substantial proportion of GLUT1 in detergent lysates co-fractionated with the lipid-raft proteins caveolin and stomatin on density-gradient centrifugation. Immunocytochemistry also revealed the presence of GLUT1-enriched domains, some of which co-localized with stomatin, in the plasma membrane. Both techniques revealed that the abundance of such putative GLUT1-containing domains was decreased not only by cholesterol depletion but also in cells subjected to metabolic stress. Taken together, these data suggest that a change in the lipid environment of GLUT1, possibly associated with its re-distribution between different microdomains of the plasma membrane, could play a role in its activation in response to stress.
Full Text
The Full Text of this article is available as a PDF (288.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbud W., Habinowski S., Zhang J. Z., Kendrew J., Elkairi F. S., Kemp B. E., Witters L. A., Ismail-Beigi F. Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of Glut1-mediated glucose transport. Arch Biochem Biophys. 2000 Aug 15;380(2):347–352. doi: 10.1006/abbi.2000.1935. [DOI] [PubMed] [Google Scholar]
- Barnes Kay, Ingram Jean C., Porras Omar H., Barros L. Felipe, Hudson Emma R., Fryer Lee G. D., Foufelle Fabienne, Carling David, Hardie D. Grahame, Baldwin Stephen A. Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci. 2002 Jun 1;115(Pt 11):2433–2442. doi: 10.1242/jcs.115.11.2433. [DOI] [PubMed] [Google Scholar]
- Barros L. F., Barnes K., Ingram J. C., Castro J., Porras O. H., Baldwin S. A. Hyperosmotic shock induces both activation and translocation of glucose transporters in mammalian cells. Pflugers Arch. 2001 Jul;442(4):614–621. doi: 10.1007/s004240100577. [DOI] [PubMed] [Google Scholar]
- Barros L. F., Marchant R. B., Baldwin S. A. Dissection of stress-activated glucose transport from insulin-induced glucose transport in mammalian cells using wortmannin and ML-9. Biochem J. 1995 Aug 1;309(Pt 3):731–736. doi: 10.1042/bj3090731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumann C. A., Ribon V., Kanzaki M., Thurmond D. C., Mora S., Shigematsu S., Bickel P. E., Pessin J. E., Saltiel A. R. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature. 2000 Sep 14;407(6801):202–207. doi: 10.1038/35025089. [DOI] [PubMed] [Google Scholar]
- Brown D. A., London E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun. 1997 Nov 7;240(1):1–7. doi: 10.1006/bbrc.1997.7575. [DOI] [PubMed] [Google Scholar]
- Cano E., Hazzalin C. A., Mahadevan L. C. Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and -2 are implicated in the induction of c-fos and c-jun. Mol Cell Biol. 1994 Nov;14(11):7352–7362. doi: 10.1128/mcb.14.11.7352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carruthers A., Melchior D. L. Effects of lipid environment on membrane transport: the human erythrocyte sugar transport protein/lipid bilayer system. Annu Rev Physiol. 1988;50:257–271. doi: 10.1146/annurev.ph.50.030188.001353. [DOI] [PubMed] [Google Scholar]
- Carruthers A., Melchior D. L. Human erythrocyte hexose transporter activity is governed by bilayer lipid composition in reconstituted vesicles. Biochemistry. 1984 Dec 18;23(26):6901–6911. doi: 10.1021/bi00321a096. [DOI] [PubMed] [Google Scholar]
- Chamberlain Luke H., Gould Gwyn W. The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes. J Biol Chem. 2002 Oct 9;277(51):49750–49754. doi: 10.1074/jbc.M206936200. [DOI] [PubMed] [Google Scholar]
- Chiang S. H., Baumann C. A., Kanzaki M., Thurmond D. C., Watson R. T., Neudauer C. L., Macara I. G., Pessin J. E., Saltiel A. R. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature. 2001 Apr 19;410(6831):944–948. doi: 10.1038/35073608. [DOI] [PubMed] [Google Scholar]
- Christian A. E., Haynes M. P., Phillips M. C., Rothblat G. H. Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res. 1997 Nov;38(11):2264–2272. [PubMed] [Google Scholar]
- Coles S. E., Ho M. M., Chetty M. C., Nicolaou A., Stewart G. W. A variant of hereditary stomatocytosis with marked pseudohyperkalaemia. Br J Haematol. 1999 Feb;104(2):275–283. doi: 10.1046/j.1365-2141.1999.01191.x. [DOI] [PubMed] [Google Scholar]
- Davies A., Ciardelli T. L., Lienhard G. E., Boyle J. M., Whetton A. D., Baldwin S. A. Site-specific antibodies as probes of the topology and function of the human erythrocyte glucose transporter. Biochem J. 1990 Mar 15;266(3):799–808. [PMC free article] [PubMed] [Google Scholar]
- Dermine J. F., Duclos S., Garin J., St-Louis F., Rea S., Parton R. G., Desjardins M. Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem. 2001 Feb 27;276(21):18507–18512. doi: 10.1074/jbc.M101113200. [DOI] [PubMed] [Google Scholar]
- Edidin M. Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol. 2001 Dec;11(12):492–496. doi: 10.1016/s0962-8924(01)02139-0. [DOI] [PubMed] [Google Scholar]
- Edidin Michael. The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct. 2003 Jan 16;32:257–283. doi: 10.1146/annurev.biophys.32.110601.142439. [DOI] [PubMed] [Google Scholar]
- Fukasawa M., Nishijima M., Itabe H., Takano T., Hanada K. Reduction of sphingomyelin level without accumulation of ceramide in Chinese hamster ovary cells affects detergent-resistant membrane domains and enhances cellular cholesterol efflux to methyl-beta -cyclodextrin. J Biol Chem. 2000 Nov 3;275(44):34028–34034. doi: 10.1074/jbc.M005151200. [DOI] [PubMed] [Google Scholar]
- Galbiati F., Razani B., Lisanti M. P. Emerging themes in lipid rafts and caveolae. Cell. 2001 Aug 24;106(4):403–411. doi: 10.1016/s0092-8674(01)00472-x. [DOI] [PubMed] [Google Scholar]
- Hamrahian A. H., Zhang J. Z., Elkhairi F. S., Prasad R., Ismail-Beigi F. Activation of Glut1 glucose transporter in response to inhibition of oxidative phosphorylation. Arch Biochem Biophys. 1999 Aug 15;368(2):375–379. doi: 10.1006/abbi.1999.1320. [DOI] [PubMed] [Google Scholar]
- Hooper N. M. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol. 1999 Apr-Jun;16(2):145–156. doi: 10.1080/096876899294607. [DOI] [PubMed] [Google Scholar]
- Lennon G., Auffray C., Polymeropoulos M., Soares M. B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics. 1996 Apr 1;33(1):151–152. doi: 10.1006/geno.1996.0177. [DOI] [PubMed] [Google Scholar]
- London Erwin. Insights into lipid raft structure and formation from experiments in model membranes. Curr Opin Struct Biol. 2002 Aug;12(4):480–486. doi: 10.1016/s0959-440x(02)00351-2. [DOI] [PubMed] [Google Scholar]
- Mairhofer Mario, Steiner Marianne, Mosgoeller Wilhelm, Prohaska Rainer, Salzer Ulrich. Stomatin is a major lipid-raft component of platelet alpha granules. Blood. 2002 Aug 1;100(3):897–904. doi: 10.1182/blood.v100.3.897. [DOI] [PubMed] [Google Scholar]
- Malide D., Ramm G., Cushman S. W., Slot J. W. Immunoelectron microscopic evidence that GLUT4 translocation explains the stimulation of glucose transport in isolated rat white adipose cells. J Cell Sci. 2000 Dec;113(Pt 23):4203–4210. doi: 10.1242/jcs.113.23.4203. [DOI] [PubMed] [Google Scholar]
- Mercado C. L., Loeb J. N., Ismail-Beigi F. Enhanced glucose transport in response to inhibition of respiration in Clone 9 cells. Am J Physiol. 1989 Jul;257(1 Pt 1):C19–C28. doi: 10.1152/ajpcell.1989.257.1.C19. [DOI] [PubMed] [Google Scholar]
- Naslavsky N., Stein R., Yanai A., Friedlander G., Taraboulos A. Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie isoform. J Biol Chem. 1997 Mar 7;272(10):6324–6331. doi: 10.1074/jbc.272.10.6324. [DOI] [PubMed] [Google Scholar]
- Parpal S., Karlsson M., Thorn H., Strålfors P. Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J Biol Chem. 2000 Dec 19;276(13):9670–9678. doi: 10.1074/jbc.M007454200. [DOI] [PubMed] [Google Scholar]
- Pralle A., Keller P., Florin E. L., Simons K., Hörber J. K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 2000 Mar 6;148(5):997–1008. doi: 10.1083/jcb.148.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin Darrell, Ismail-Beigi Faramarz. Distribution of Glut1 in detergent-resistant membranes (DRMs) and non-DRM domains: effect of treatment with azide. Am J Physiol Cell Physiol. 2003 Apr 9;285(2):C377–C383. doi: 10.1152/ajpcell.00060.2003. [DOI] [PubMed] [Google Scholar]
- Sakyo Tomoko, Kitagawa Takayuki. Differential localization of glucose transporter isoforms in non-polarized mammalian cells: distribution of GLUT1 but not GLUT3 to detergent-resistant membrane domains. Biochim Biophys Acta. 2002 Dec 23;1567(1-2):165–175. doi: 10.1016/s0005-2736(02)00613-2. [DOI] [PubMed] [Google Scholar]
- Salzer U., Prohaska R. Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood. 2001 Feb 15;97(4):1141–1143. doi: 10.1182/blood.v97.4.1141. [DOI] [PubMed] [Google Scholar]
- Schütz G. J., Kada G., Pastushenko V. P., Schindler H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 2000 Mar 1;19(5):892–901. doi: 10.1093/emboj/19.5.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shetty M., Loeb J. N., Ismail-Beigi F. Enhancement of glucose transport in response to inhibition of oxidative metabolism: pre- and posttranslational mechanisms. Am J Physiol. 1992 Feb;262(2 Pt 1):C527–C532. doi: 10.1152/ajpcell.1992.262.2.C527. [DOI] [PubMed] [Google Scholar]
- Shetty M., Loeb J. N., Vikstrom K., Ismail-Beigi F. Rapid activation of GLUT-1 glucose transporter following inhibition of oxidative phosphorylation in clone 9 cells. J Biol Chem. 1993 Aug 15;268(23):17225–17232. [PubMed] [Google Scholar]
- Shi Y., Liu H., Vanderburg G., Samuel S. J., Ismail-Beigi F., Jung C. Y. Modulation of GLUT1 intrinsic activity in clone 9 cells by inhibition of oxidative phosphorylation. J Biol Chem. 1995 Sep 15;270(37):21772–21778. doi: 10.1074/jbc.270.37.21772. [DOI] [PubMed] [Google Scholar]
- Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
- Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
- Smart Eric J., Anderson Richard G. W. Alterations in membrane cholesterol that affect structure and function of caveolae. Methods Enzymol. 2002;353:131–139. doi: 10.1016/s0076-6879(02)53043-3. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Varma R., Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 1998 Aug 20;394(6695):798–801. doi: 10.1038/29563. [DOI] [PubMed] [Google Scholar]
- Watson R. T., Shigematsu S., Chiang S. H., Mora S., Kanzaki M., Macara I. G., Saltiel A. R., Pessin J. E. Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J Cell Biol. 2001 Aug 13;154(4):829–840. doi: 10.1083/jcb.200102078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J. Z., Abbud W., Prohaska R., Ismail-Beigi F. Overexpression of stomatin depresses GLUT-1 glucose transporter activity. Am J Physiol Cell Physiol. 2001 May;280(5):C1277–C1283. doi: 10.1152/ajpcell.2001.280.5.C1277. [DOI] [PubMed] [Google Scholar]
- Zhang J. Z., Hayashi H., Ebina Y., Prohaska R., Ismail-Beigi F. Association of stomatin (band 7.2b) with Glut1 glucose transporter. Arch Biochem Biophys. 1999 Dec 1;372(1):173–178. doi: 10.1006/abbi.1999.1489. [DOI] [PubMed] [Google Scholar]