Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Mar 1;378(Pt 2):485–495. doi: 10.1042/BJ20031088

Complexity of glutamine metabolism in kidney tubules from fed and fasted rats.

Barbara Vercoutère 1, Daniel Durozard 1, Gabriel Baverel 1, Guy Martin 1
PMCID: PMC1223972  PMID: 14616091

Abstract

Glutamine is an important renal glucose precursor and energy provider. In order to advance our understanding of the underlying metabolic processes, we studied the metabolism of variously labelled [13C]glutamine and [14C]glutamine molecules and the effects of fasting in isolated rat renal proximal tubules. Absolute fluxes through the enzymes involved, including enzymes of four different cycles operating concomitantly, were assessed by combining mainly the 13C NMR data with an appropriate model of glutamine metabolism. In both nutritional states, unidirectional glutamine removal by glutaminase was partially masked by the concomitant operation of glutamine synthetase; fasting accelerated glutamine removal by increasing flux solely through glutaminase, without changing that through glutamine synthetase. Fasting stimulated net glutamate degradation only by decreasing flux through glutamate dehydrogenase in the reductive amination direction, but surprisingly did not significantly alter complete oxidation of the glutamine carbon skeleton. Finally, gluconeogenesis from glutamine involved not only substantial recycling through the tricarboxylic acid cycle, but also an important anaplerotic flux through pyruvate carboxylase that was accelerated dramatically by fasting. Thus renal glutamine metabolism follows an unexpectedly complex route that is precisely regulated during fasting.

Full Text

The Full Text of this article is available as a PDF (165.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baverel G., Bonnard M., D'Armagnac de Castanet E., Pellet M. Lactate and pyruvate metabolism in isolated renal tubules of normal dogs. Kidney Int. 1978 Dec;14(6):567–575. doi: 10.1038/ki.1978.165. [DOI] [PubMed] [Google Scholar]
  2. Baverel G., Lund P. A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochem J. 1979 Dec 15;184(3):599–606. doi: 10.1042/bj1840599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett F. I., Alexander J. E., Roobol A., Alleyne G. A. Effect of starvation on renal metabolism in the rat. Kidney Int. 1975 Jun;7(6):380–384. doi: 10.1038/ki.1975.55. [DOI] [PubMed] [Google Scholar]
  4. Brosnan J. T., Man K. C., Hall D. E., Colbourne S. A., Brosnan M. E. Interorgan metabolism of amino acids in streptozotocin-diabetic ketoacidotic rat. Am J Physiol. 1983 Feb;244(2):E151–E158. doi: 10.1152/ajpendo.1983.244.2.E151. [DOI] [PubMed] [Google Scholar]
  5. Burch H. B., Narins R. G., Chu C., Fagioli S., Choi S., McCarthy W., Lowry O. H. Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation. Am J Physiol. 1978 Sep;235(3):F246–F253. doi: 10.1152/ajprenal.1978.235.3.F246. [DOI] [PubMed] [Google Scholar]
  6. Canioni P., Alger J. R., Shulman R. G. Natural abundance Carbon-13 nuclear magnetic resonance spectroscopy of liver and adipose tissue of the living rat. Biochemistry. 1983 Oct 11;22(21):4974–4980. doi: 10.1021/bi00290a015. [DOI] [PubMed] [Google Scholar]
  7. Cersosimo E., Garlick P., Ferretti J. Insulin regulation of renal glucose metabolism in humans. Am J Physiol. 1999 Jan;276(1 Pt 1):E78–E84. doi: 10.1152/ajpendo.1999.276.1.E78. [DOI] [PubMed] [Google Scholar]
  8. Cersosimo E., Garlick P., Ferretti J. Regulation of splanchnic and renal substrate supply by insulin in humans. Metabolism. 2000 May;49(5):676–683. doi: 10.1016/s0026-0495(00)80048-7. [DOI] [PubMed] [Google Scholar]
  9. Chauvin M. F., Megnin-Chanet F., Martin G., Mispelter J., Baverel G. The rabbit kidney tubule simultaneously degrades and synthesizes glutamate. A 13C NMR study. J Biol Chem. 1997 Feb 21;272(8):4705–4716. doi: 10.1074/jbc.272.8.4705. [DOI] [PubMed] [Google Scholar]
  10. Chauvin M. F., Mégnin-Chanet F., Martin G., Lhoste J. M., Baverel G. The rabbit kidney tubule utilizes glucose for glutamine synthesis. A 13C NMR study. J Biol Chem. 1994 Oct 21;269(42):26025–26033. [PubMed] [Google Scholar]
  11. Conjard Agnès, Dugelay Sylvie, Chauvin Marie-France, Durozard Daniel, Baverel Gabriel, Martin Guy. The anaplerotic substrate alanine stimulates acetate incorporation into glutamate and glutamine in rabbit kidney tubules. A (13)C NMR study. J Biol Chem. 2002 May 17;277(33):29444–29454. doi: 10.1074/jbc.M111335200. [DOI] [PubMed] [Google Scholar]
  12. Curthoys N. P., Lowry O. H. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J Biol Chem. 1973 Jan 10;248(1):162–168. [PubMed] [Google Scholar]
  13. Curthoys N. P., Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15:133–159. doi: 10.1146/annurev.nu.15.070195.001025. [DOI] [PubMed] [Google Scholar]
  14. Damian A. C., Pitts R. F. Rates of glutaminase I and glutamine synthetase reactions in rat kidney in vivo. Am J Physiol. 1970 May;218(5):1249–1255. doi: 10.1152/ajplegacy.1970.218.5.1249. [DOI] [PubMed] [Google Scholar]
  15. Dugelay S., Chauvin M. F., Megnin-Chanet F., Martin G., Laréal M. C., Lhoste J. M., Baverel G. Acetate stimulates flux through the tricarboxylic acid cycle in rabbit renal proximal tubules synthesizing glutamine from alanine: a 13C NMR study. Biochem J. 1999 Sep 15;342(Pt 3):555–566. [PMC free article] [PubMed] [Google Scholar]
  16. Ekberg K., Landau B. R., Wajngot A., Chandramouli V., Efendic S., Brunengraber H., Wahren J. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes. 1999 Feb;48(2):292–298. doi: 10.2337/diabetes.48.2.292. [DOI] [PubMed] [Google Scholar]
  17. Elhamri M., Martin M., Ferrier B., Baverel G. Substrate uptake and utilization by the kidney of fed and starved rats in vivo. Ren Physiol Biochem. 1993 Nov-Dec;16(6):311–324. doi: 10.1159/000173777. [DOI] [PubMed] [Google Scholar]
  18. Fine A. Effects of acute metabolic acidosis on renal, gut, liver, and muscle metabolism of glutamine and ammonia in the dog. Kidney Int. 1982 Mar;21(3):439–444. doi: 10.1038/ki.1982.44. [DOI] [PubMed] [Google Scholar]
  19. Guder W. G., Ross B. D. Enzyme distribution along the nephron. Kidney Int. 1984 Aug;26(2):101–111. doi: 10.1038/ki.1984.143. [DOI] [PubMed] [Google Scholar]
  20. Guder W. G., Schmidt U. The localization of gluconeogenesis in rat nephron. Determination of phosphoenolpyruvate carboxykinase in microdissected tubules. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):273–278. doi: 10.1515/bchm2.1974.355.1.273. [DOI] [PubMed] [Google Scholar]
  21. Halperin M. L., Jungas R. L., Pichette C., Goldstein M. B. A quantitative analysis of renal ammoniagenesis and energy balance: a theoretical approach. Can J Physiol Pharmacol. 1982 Dec;60(12):1431–1435. doi: 10.1139/y82-212. [DOI] [PubMed] [Google Scholar]
  22. Hanson R. W., Patel Y. M. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. Adv Enzymol Relat Areas Mol Biol. 1994;69:203–281. doi: 10.1002/9780470123157.ch6. [DOI] [PubMed] [Google Scholar]
  23. Hems D. A. Metabolism of glutamine and glutamic acid by isolated perfused kidneys of normal and acidotic rats. Biochem J. 1972 Dec;130(3):671–680. doi: 10.1042/bj1300671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Henning H. V., Stumpf B., Ohly B., Seubert W. On the mechanism of gluconeogenesis and its regulation. 3. The glucogenic capacity and the activities of pyruvate carboxylase and PEP-carboxylase of rat kidney and rat liver after cortisol treatment and starvation. Biochem Z. 1966 Apr 27;344(3):274–288. [PubMed] [Google Scholar]
  25. Hills A. G., Reid E. L., Kerr W. D. Circulatory transport of L-glutamine in fasted mammals: cellular sources of urine ammonia. Am J Physiol. 1972 Dec;223(6):1470–1476. doi: 10.1152/ajplegacy.1972.223.6.1470. [DOI] [PubMed] [Google Scholar]
  26. Hughey R. P., Rankin B. B., Curthoys N. P. Acute acidosis and renal arteriovenous differences of glutamine in normal and adrenalectomized rats. Am J Physiol. 1980 Mar;238(3):F199–F204. doi: 10.1152/ajprenal.1980.238.3.F199. [DOI] [PubMed] [Google Scholar]
  27. Iynedjian P. B., Ballard F. J., Hanson R. W. The regulation of phosphoenolpyruvate carboxykinase (GTP) synthesis in rat kidney cortex. The role of acid-base balance and glucocorticoids. J Biol Chem. 1975 Jul 25;250(14):5596–5603. [PubMed] [Google Scholar]
  28. Jucker B. M., Lee J. Y., Shulman R. G. In vivo 13C NMR measurements of hepatocellular tricarboxylic acid cycle flux. J Biol Chem. 1998 May 15;273(20):12187–12194. doi: 10.1074/jbc.273.20.12187. [DOI] [PubMed] [Google Scholar]
  29. Kamm D. E., Strope G. L. The effects of acidosis and alkalosis on the metabolism of glutamine and glutamate in renal cortex slices. J Clin Invest. 1972 May;51(5):1251–1263. doi: 10.1172/JCI106920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kida K., Nakajo S., Kamiya F., Toyama Y., Nishio T., Nakagawa H. Renal net glucose release in vivo and its contribution to blood glucose in rats. J Clin Invest. 1978 Oct;62(4):721–726. doi: 10.1172/JCI109182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Martin G., Chauvin M. F., Baverel G. Model applicable to NMR studies for calculating flux rates in five cycles involved in glutamate metabolism. J Biol Chem. 1997 Feb 21;272(8):4717–4728. doi: 10.1074/jbc.272.8.4717. [DOI] [PubMed] [Google Scholar]
  32. Mujais S. K., Zahid M. Tubular CO2 production from glutamine in the rat: segmental profile and modulation. Ren Physiol Biochem. 1992 May-Aug;15(3-4):119–128. doi: 10.1159/000173450. [DOI] [PubMed] [Google Scholar]
  33. Nissim I. Newer aspects of glutamine/glutamate metabolism: the role of acute pH changes. Am J Physiol. 1999 Oct;277(4 Pt 2):F493–F497. doi: 10.1152/ajprenal.1999.277.4.F493. [DOI] [PubMed] [Google Scholar]
  34. Nissim I., Nissim I., Yudkoff M. Adaptation of renal tricarboxylic acid cycle metabolism to various acid-base states: study with [3-13C,5-15N]glutamine. Miner Electrolyte Metab. 1991;17(1):21–31. [PubMed] [Google Scholar]
  35. Nissim I., States B., Nissim I., Lin Z. P., Yudkoff M. Hormonal regulation of glutamine metabolism by OK cells. Kidney Int. 1995 Jan;47(1):96–105. doi: 10.1038/ki.1995.11. [DOI] [PubMed] [Google Scholar]
  36. OWEN E. E., ROBINSON R. R. Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J Clin Invest. 1963 Feb;42:263–276. doi: 10.1172/JCI104713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Owen O. E., Felig P., Morgan A. P., Wahren J., Cahill G. F., Jr Liver and kidney metabolism during prolonged starvation. J Clin Invest. 1969 Mar;48(3):574–583. doi: 10.1172/JCI106016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Parry D. M., Brosnan J. T. Glutamine metabolism in the kidney during induction of, and recovery from, metabolic acidosis in the rat. Biochem J. 1978 Aug 15;174(2):387–396. doi: 10.1042/bj1740387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pfaller W. Structure function correlation on rat kidney. Quantitative correlation of structure and function in the normal and injured rat kidney. Adv Anat Embryol Cell Biol. 1982;70:1–106. [PubMed] [Google Scholar]
  40. Ross B. D. Effect of inhibition of gluconeogenesis on ammonia production in the perfused rat kidney. Clin Sci Mol Med. 1976 Jun;50(6):493–498. doi: 10.1042/cs0500493. [DOI] [PubMed] [Google Scholar]
  41. Schmid H., Mall A., Scholz M., Schmidt U. Unchanged glycolytic capacity in rat kidney under conditions of stimulated gluconeogenesis. Determination of phosphofructokinase and pyruvate kinase in microdissected nephron segments of fasted and acidotic animals. Hoppe Seylers Z Physiol Chem. 1980;361(6):819–827. doi: 10.1515/bchm2.1980.361.1.819. [DOI] [PubMed] [Google Scholar]
  42. Schoolwerth A. C., deBoer P. A., Moorman A. F., Lamers W. H. Changes in mRNAs for enzymes of glutamine metabolism in kidney and liver during ammonium chloride acidosis. Am J Physiol. 1994 Sep;267(3 Pt 2):F400–F406. doi: 10.1152/ajprenal.1994.267.3.F400. [DOI] [PubMed] [Google Scholar]
  43. Schröck H., Cha C. J., Goldstein L. Glutamine release from hindlimb and uptake by kidney in the acutely acidotic rat. Biochem J. 1980 May 15;188(2):557–560. doi: 10.1042/bj1880557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schröck H., Goldstein L. Interorgan relationships for glutamine metabolism in normal and acidotic rats. Am J Physiol. 1981 May;240(5):E519–E525. doi: 10.1152/ajpendo.1981.240.5.E519. [DOI] [PubMed] [Google Scholar]
  45. Silverman M., Vinay P., Shinobu L., Gougoux A., Lemieux G. Luminal and antiluminal transport of glutamine in dog kidney: effect of metabolic acidosis. Kidney Int. 1981 Sep;20(3):359–365. doi: 10.1038/ki.1981.147. [DOI] [PubMed] [Google Scholar]
  46. Squires E. J., Hall D. E., Brosnan J. T. Arteriovenous differences for amino acids and lactate across kidneys of normal and acidotic rats. Biochem J. 1976 Oct 15;160(1):125–128. doi: 10.1042/bj1600125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stumvoll M., Perriello G., Meyer C., Gerich J. Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int. 1999 Mar;55(3):778–792. doi: 10.1046/j.1523-1755.1999.055003778.x. [DOI] [PubMed] [Google Scholar]
  48. Tizianello A., De Ferrari G., Garibotto G., Gurreri G., Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest. 1980 May;65(5):1162–1173. doi: 10.1172/JCI109771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vinay P., Gougoux A., Lemieux G. Isolation of a pure suspension of rat proximal tubules. Am J Physiol. 1981 Oct;241(4):F403–F411. doi: 10.1152/ajprenal.1981.241.4.F403. [DOI] [PubMed] [Google Scholar]
  50. Vinay P., Mapes J. P., Krebs H. A. Fate of glutamine carbon in renal metabolism. Am J Physiol. 1978 Feb;234(2):F123–F129. doi: 10.1152/ajprenal.1978.234.2.F123. [DOI] [PubMed] [Google Scholar]
  51. Watford M., Vinay P., Lemieux G., Gougoux A. Inhibition of renal gluconeogenesis and phosphoenolpyruvate carboxykinase activity by 3-mercaptopicolinic acid: studies in rat, guinea pig, dog, rabbit, and man. Can J Biochem. 1980 May;58(5):440–445. doi: 10.1139/o80-058. [DOI] [PubMed] [Google Scholar]
  52. Watford M., Vinay P., Lemieux G., Gougoux A. The regulation of glucose and pyruvate formation from glutamine and citric-acid-cycle intermediates in the kidney cortex of rats, dogs, rabbits and guinea pigs. Biochem J. 1980 Jun 15;188(3):741–748. doi: 10.1042/bj1880741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Welbourne T., Routh R., Yudkoff M., Nissim I. The glutamine/glutamate couplet and cellular function. News Physiol Sci. 2001 Aug;16:157–160. doi: 10.1152/physiologyonline.2001.16.4.157. [DOI] [PubMed] [Google Scholar]
  54. Wright P. A., Knepper M. A. Phosphate-dependent glutaminase activity in rat renal cortical and medullary tubule segments. Am J Physiol. 1990 Dec;259(6 Pt 2):F961–F970. doi: 10.1152/ajprenal.1990.259.6.F961. [DOI] [PubMed] [Google Scholar]
  55. Yamamoto H., Aikawa T., Matsutaka H., Okuda T., Ishikawa E. Interorganal relationships of amino acid metabolism in fed rats. Am J Physiol. 1974 Jun;226(6):1428–1433. doi: 10.1152/ajplegacy.1974.226.6.1428. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES